Cargando…
Simulation Method for the Physical Deformation of a Three-Dimensional Soft Body in Augmented Reality-Based External Ventricular Drainage
OBJECTIVES: Intraoperative navigation reduces the risk of major complications and increases the likelihood of optimal surgical outcomes. This paper presents an augmented reality (AR)-based simulation technique for ventriculostomy that visualizes brain deformations caused by the movements of a surgic...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Medical Informatics
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440195/ https://www.ncbi.nlm.nih.gov/pubmed/37591677 http://dx.doi.org/10.4258/hir.2023.29.3.218 |
_version_ | 1785093121538785280 |
---|---|
author | Koo, Kyoyeong Park, Taeyong Jeong, Heeryeol Khang, Seungwoo Koh, Chin Su Park, Minkyung Kim, Myung Ji Jung, Hyun Ho Shin, Juneseuk Kim, Kyung Won Lee, Jeongjin |
author_facet | Koo, Kyoyeong Park, Taeyong Jeong, Heeryeol Khang, Seungwoo Koh, Chin Su Park, Minkyung Kim, Myung Ji Jung, Hyun Ho Shin, Juneseuk Kim, Kyung Won Lee, Jeongjin |
author_sort | Koo, Kyoyeong |
collection | PubMed |
description | OBJECTIVES: Intraoperative navigation reduces the risk of major complications and increases the likelihood of optimal surgical outcomes. This paper presents an augmented reality (AR)-based simulation technique for ventriculostomy that visualizes brain deformations caused by the movements of a surgical instrument in a three-dimensional brain model. This is achieved by utilizing a position-based dynamics (PBD) physical deformation method on a preoperative brain image. METHODS: An infrared camera-based AR surgical environment aligns the real-world space with a virtual space and tracks the surgical instruments. For a realistic representation and reduced simulation computation load, a hybrid geometric model is employed, which combines a high-resolution mesh model and a multiresolution tetrahedron model. Collision handling is executed when a collision between the brain and surgical instrument is detected. Constraints are used to preserve the properties of the soft body and ensure stable deformation. RESULTS: The experiment was conducted once in a phantom environment and once in an actual surgical environment. The tasks of inserting the surgical instrument into the ventricle using only the navigation information presented through the smart glasses and verifying the drainage of cerebrospinal fluid were evaluated. These tasks were successfully completed, as indicated by the drainage, and the deformation simulation speed averaged 18.78 fps. CONCLUSIONS: This experiment confirmed that the AR-based method for external ventricular drain surgery was beneficial to clinicians. |
format | Online Article Text |
id | pubmed-10440195 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Korean Society of Medical Informatics |
record_format | MEDLINE/PubMed |
spelling | pubmed-104401952023-08-21 Simulation Method for the Physical Deformation of a Three-Dimensional Soft Body in Augmented Reality-Based External Ventricular Drainage Koo, Kyoyeong Park, Taeyong Jeong, Heeryeol Khang, Seungwoo Koh, Chin Su Park, Minkyung Kim, Myung Ji Jung, Hyun Ho Shin, Juneseuk Kim, Kyung Won Lee, Jeongjin Healthc Inform Res Original Article OBJECTIVES: Intraoperative navigation reduces the risk of major complications and increases the likelihood of optimal surgical outcomes. This paper presents an augmented reality (AR)-based simulation technique for ventriculostomy that visualizes brain deformations caused by the movements of a surgical instrument in a three-dimensional brain model. This is achieved by utilizing a position-based dynamics (PBD) physical deformation method on a preoperative brain image. METHODS: An infrared camera-based AR surgical environment aligns the real-world space with a virtual space and tracks the surgical instruments. For a realistic representation and reduced simulation computation load, a hybrid geometric model is employed, which combines a high-resolution mesh model and a multiresolution tetrahedron model. Collision handling is executed when a collision between the brain and surgical instrument is detected. Constraints are used to preserve the properties of the soft body and ensure stable deformation. RESULTS: The experiment was conducted once in a phantom environment and once in an actual surgical environment. The tasks of inserting the surgical instrument into the ventricle using only the navigation information presented through the smart glasses and verifying the drainage of cerebrospinal fluid were evaluated. These tasks were successfully completed, as indicated by the drainage, and the deformation simulation speed averaged 18.78 fps. CONCLUSIONS: This experiment confirmed that the AR-based method for external ventricular drain surgery was beneficial to clinicians. Korean Society of Medical Informatics 2023-07 2023-07-31 /pmc/articles/PMC10440195/ /pubmed/37591677 http://dx.doi.org/10.4258/hir.2023.29.3.218 Text en © 2023 The Korean Society of Medical Informatics https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) ) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Koo, Kyoyeong Park, Taeyong Jeong, Heeryeol Khang, Seungwoo Koh, Chin Su Park, Minkyung Kim, Myung Ji Jung, Hyun Ho Shin, Juneseuk Kim, Kyung Won Lee, Jeongjin Simulation Method for the Physical Deformation of a Three-Dimensional Soft Body in Augmented Reality-Based External Ventricular Drainage |
title | Simulation Method for the Physical Deformation of a Three-Dimensional Soft Body in Augmented Reality-Based External Ventricular Drainage |
title_full | Simulation Method for the Physical Deformation of a Three-Dimensional Soft Body in Augmented Reality-Based External Ventricular Drainage |
title_fullStr | Simulation Method for the Physical Deformation of a Three-Dimensional Soft Body in Augmented Reality-Based External Ventricular Drainage |
title_full_unstemmed | Simulation Method for the Physical Deformation of a Three-Dimensional Soft Body in Augmented Reality-Based External Ventricular Drainage |
title_short | Simulation Method for the Physical Deformation of a Three-Dimensional Soft Body in Augmented Reality-Based External Ventricular Drainage |
title_sort | simulation method for the physical deformation of a three-dimensional soft body in augmented reality-based external ventricular drainage |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440195/ https://www.ncbi.nlm.nih.gov/pubmed/37591677 http://dx.doi.org/10.4258/hir.2023.29.3.218 |
work_keys_str_mv | AT kookyoyeong simulationmethodforthephysicaldeformationofathreedimensionalsoftbodyinaugmentedrealitybasedexternalventriculardrainage AT parktaeyong simulationmethodforthephysicaldeformationofathreedimensionalsoftbodyinaugmentedrealitybasedexternalventriculardrainage AT jeongheeryeol simulationmethodforthephysicaldeformationofathreedimensionalsoftbodyinaugmentedrealitybasedexternalventriculardrainage AT khangseungwoo simulationmethodforthephysicaldeformationofathreedimensionalsoftbodyinaugmentedrealitybasedexternalventriculardrainage AT kohchinsu simulationmethodforthephysicaldeformationofathreedimensionalsoftbodyinaugmentedrealitybasedexternalventriculardrainage AT parkminkyung simulationmethodforthephysicaldeformationofathreedimensionalsoftbodyinaugmentedrealitybasedexternalventriculardrainage AT kimmyungji simulationmethodforthephysicaldeformationofathreedimensionalsoftbodyinaugmentedrealitybasedexternalventriculardrainage AT junghyunho simulationmethodforthephysicaldeformationofathreedimensionalsoftbodyinaugmentedrealitybasedexternalventriculardrainage AT shinjuneseuk simulationmethodforthephysicaldeformationofathreedimensionalsoftbodyinaugmentedrealitybasedexternalventriculardrainage AT kimkyungwon simulationmethodforthephysicaldeformationofathreedimensionalsoftbodyinaugmentedrealitybasedexternalventriculardrainage AT leejeongjin simulationmethodforthephysicaldeformationofathreedimensionalsoftbodyinaugmentedrealitybasedexternalventriculardrainage |