Cargando…
Understanding Arteriosclerotic Heart Disease Patients Using Electronic Health Records: A Machine Learning and Shapley Additive exPlanations Approach
OBJECTIVES: The number of deaths from cardiovascular disease is projected to reach 23.3 million by 2030. As a contribution to preventing this phenomenon, this paper proposed a machine learning (ML) model to predict patients with arteriosclerotic heart disease (AHD). We also interpreted the predictio...
Autores principales: | Miranda, Eka, Adiarto, Suko, Bhatti, Faqir M., Zakiyyah, Alfi Yusrotis, Aryuni, Mediana, Bernando, Charles |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Medical Informatics
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440196/ https://www.ncbi.nlm.nih.gov/pubmed/37591678 http://dx.doi.org/10.4258/hir.2023.29.3.228 |
Ejemplares similares
-
Exploring kinase family inhibitors and their moiety preferences using deep SHapley additive exPlanations
por: Fan, You-Wei, et al.
Publicado: (2022) -
New SHapley Additive ExPlanations (SHAP) Approach to Evaluate the Raw Materials Interactions of Steel-Fiber-Reinforced Concrete
por: Anjum, Madiha, et al.
Publicado: (2022) -
Machine Learning Models Using SHapley Additive exPlanation for Fire Risk Assessment Mode and Effects Analysis of Stadiums
por: Lu, Ying, et al.
Publicado: (2023) -
Predicting and Analyzing Road Traffic Injury Severity Using Boosting-Based Ensemble Learning Models with SHAPley Additive exPlanations
por: Dong, Sheng, et al.
Publicado: (2022) -
Prediction of lymph node metastasis in patients with breast invasive micropapillary carcinoma based on machine learning and SHapley Additive exPlanations framework
por: Jiang, Cong, et al.
Publicado: (2022)