Nomogram of uveal melanoma as prediction model of metastasis risk
BACKGROUND: Since the poor prognosis of uveal melanoma with distant metastasis, we intended to screen out possible biomarkers for uveal melanoma metastasis risk and establish a nomogram model for predicting the risk of uveal melanoma (UVM) metastasis. METHODS: Two datasets of UVM (GSE84976, GSE22138...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440531/ https://www.ncbi.nlm.nih.gov/pubmed/37609406 http://dx.doi.org/10.1016/j.heliyon.2023.e18956 |
_version_ | 1785093175482777600 |
---|---|
author | Wang, Yimin Xie, Minyue Lin, Feng Sheng, Xiaonan Zhao, Xiaohuan Zhu, Xinyue Wang, Yuwei Lu, Bing Chen, Jieqiong Zhang, Ting Wan, Xiaoling Liu, Wenjia Sun, Xiaodong |
author_facet | Wang, Yimin Xie, Minyue Lin, Feng Sheng, Xiaonan Zhao, Xiaohuan Zhu, Xinyue Wang, Yuwei Lu, Bing Chen, Jieqiong Zhang, Ting Wan, Xiaoling Liu, Wenjia Sun, Xiaodong |
author_sort | Wang, Yimin |
collection | PubMed |
description | BACKGROUND: Since the poor prognosis of uveal melanoma with distant metastasis, we intended to screen out possible biomarkers for uveal melanoma metastasis risk and establish a nomogram model for predicting the risk of uveal melanoma (UVM) metastasis. METHODS: Two datasets of UVM (GSE84976, GSE22138) were selected. Data was analyzed by R language, CTD database and GEPIA. RESULTS: The co-upregulated genes of two datasets, HTR2B, CHAC1, AHNAK2, and PTP4A3 were identified using a Venn diagram. These biomarkers are combined with clinical characteristics, and Lasso regression was conducted to filter the metastasis-related biomarkers. HTR2B, CHAC1, AHNAK2, PTP4A3, tumor thickness, and retinal detachment (RD) were selected to establish the nomogram. CONCLUSION: Our study provides a comprehensive predictive model and personalized risk estimation tool for assessment of 3-year metastasis risk of UVM with a better accuracy. |
format | Online Article Text |
id | pubmed-10440531 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-104405312023-08-22 Nomogram of uveal melanoma as prediction model of metastasis risk Wang, Yimin Xie, Minyue Lin, Feng Sheng, Xiaonan Zhao, Xiaohuan Zhu, Xinyue Wang, Yuwei Lu, Bing Chen, Jieqiong Zhang, Ting Wan, Xiaoling Liu, Wenjia Sun, Xiaodong Heliyon Research Article BACKGROUND: Since the poor prognosis of uveal melanoma with distant metastasis, we intended to screen out possible biomarkers for uveal melanoma metastasis risk and establish a nomogram model for predicting the risk of uveal melanoma (UVM) metastasis. METHODS: Two datasets of UVM (GSE84976, GSE22138) were selected. Data was analyzed by R language, CTD database and GEPIA. RESULTS: The co-upregulated genes of two datasets, HTR2B, CHAC1, AHNAK2, and PTP4A3 were identified using a Venn diagram. These biomarkers are combined with clinical characteristics, and Lasso regression was conducted to filter the metastasis-related biomarkers. HTR2B, CHAC1, AHNAK2, PTP4A3, tumor thickness, and retinal detachment (RD) were selected to establish the nomogram. CONCLUSION: Our study provides a comprehensive predictive model and personalized risk estimation tool for assessment of 3-year metastasis risk of UVM with a better accuracy. Elsevier 2023-08-06 /pmc/articles/PMC10440531/ /pubmed/37609406 http://dx.doi.org/10.1016/j.heliyon.2023.e18956 Text en © 2023 Published by Elsevier Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Wang, Yimin Xie, Minyue Lin, Feng Sheng, Xiaonan Zhao, Xiaohuan Zhu, Xinyue Wang, Yuwei Lu, Bing Chen, Jieqiong Zhang, Ting Wan, Xiaoling Liu, Wenjia Sun, Xiaodong Nomogram of uveal melanoma as prediction model of metastasis risk |
title | Nomogram of uveal melanoma as prediction model of metastasis risk |
title_full | Nomogram of uveal melanoma as prediction model of metastasis risk |
title_fullStr | Nomogram of uveal melanoma as prediction model of metastasis risk |
title_full_unstemmed | Nomogram of uveal melanoma as prediction model of metastasis risk |
title_short | Nomogram of uveal melanoma as prediction model of metastasis risk |
title_sort | nomogram of uveal melanoma as prediction model of metastasis risk |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440531/ https://www.ncbi.nlm.nih.gov/pubmed/37609406 http://dx.doi.org/10.1016/j.heliyon.2023.e18956 |
work_keys_str_mv | AT wangyimin nomogramofuvealmelanomaaspredictionmodelofmetastasisrisk AT xieminyue nomogramofuvealmelanomaaspredictionmodelofmetastasisrisk AT linfeng nomogramofuvealmelanomaaspredictionmodelofmetastasisrisk AT shengxiaonan nomogramofuvealmelanomaaspredictionmodelofmetastasisrisk AT zhaoxiaohuan nomogramofuvealmelanomaaspredictionmodelofmetastasisrisk AT zhuxinyue nomogramofuvealmelanomaaspredictionmodelofmetastasisrisk AT wangyuwei nomogramofuvealmelanomaaspredictionmodelofmetastasisrisk AT lubing nomogramofuvealmelanomaaspredictionmodelofmetastasisrisk AT chenjieqiong nomogramofuvealmelanomaaspredictionmodelofmetastasisrisk AT zhangting nomogramofuvealmelanomaaspredictionmodelofmetastasisrisk AT wanxiaoling nomogramofuvealmelanomaaspredictionmodelofmetastasisrisk AT liuwenjia nomogramofuvealmelanomaaspredictionmodelofmetastasisrisk AT sunxiaodong nomogramofuvealmelanomaaspredictionmodelofmetastasisrisk |