Cargando…
Bayesian modeling of dynamic behavioral change during an epidemic
For many infectious disease outbreaks, the at-risk population changes their behavior in response to the outbreak severity, causing the transmission dynamics to change in real-time. Behavioral change is often ignored in epidemic modeling efforts, making these models less useful than they could be. We...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
KeAi Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440573/ https://www.ncbi.nlm.nih.gov/pubmed/37608881 http://dx.doi.org/10.1016/j.idm.2023.08.002 |
Sumario: | For many infectious disease outbreaks, the at-risk population changes their behavior in response to the outbreak severity, causing the transmission dynamics to change in real-time. Behavioral change is often ignored in epidemic modeling efforts, making these models less useful than they could be. We address this by introducing a novel class of data-driven epidemic models which characterize and accurately estimate behavioral change. Our proposed model allows time-varying transmission to be captured by the level of “alarm” in the population, with alarm specified as a function of the past epidemic trajectory. We investigate the estimability of the population alarm across a wide range of scenarios, applying both parametric functions and non-parametric functions using splines and Gaussian processes. The model is set in the data-augmented Bayesian framework to allow estimation on partially observed epidemic data. The benefit and utility of the proposed approach is illustrated through applications to data from real epidemics. |
---|