Cargando…
The structural basis of hyperpromiscuity in a core combinatorial network of type II toxin–antitoxin and related phage defense systems
Toxin-antitoxin (TA) systems are a large group of small genetic modules found in prokaryotes and their mobile genetic elements. Type II TAs are encoded as bicistronic (two-gene) operons that encode two proteins: a toxin and a neutralizing antitoxin. Using our tool NetFlax (standing for Network-FlaGs...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440598/ https://www.ncbi.nlm.nih.gov/pubmed/37556498 http://dx.doi.org/10.1073/pnas.2305393120 |
_version_ | 1785093191802814464 |
---|---|
author | Ernits, Karin Saha, Chayan Kumar Brodiazhenko, Tetiana Chouhan, Bhanu Shenoy, Aditi Buttress, Jessica A. Duque-Pedraza, Julián J. Bojar, Veda Nakamoto, Jose A. Kurata, Tatsuaki Egorov, Artyom A. Shyrokova, Lena Johansson, Marcus J. O. Mets, Toomas Rustamova, Aytan Džigurski, Jelisaveta Tenson, Tanel Garcia-Pino, Abel Strahl, Henrik Elofsson, Arne Hauryliuk, Vasili Atkinson, Gemma C. |
author_facet | Ernits, Karin Saha, Chayan Kumar Brodiazhenko, Tetiana Chouhan, Bhanu Shenoy, Aditi Buttress, Jessica A. Duque-Pedraza, Julián J. Bojar, Veda Nakamoto, Jose A. Kurata, Tatsuaki Egorov, Artyom A. Shyrokova, Lena Johansson, Marcus J. O. Mets, Toomas Rustamova, Aytan Džigurski, Jelisaveta Tenson, Tanel Garcia-Pino, Abel Strahl, Henrik Elofsson, Arne Hauryliuk, Vasili Atkinson, Gemma C. |
author_sort | Ernits, Karin |
collection | PubMed |
description | Toxin-antitoxin (TA) systems are a large group of small genetic modules found in prokaryotes and their mobile genetic elements. Type II TAs are encoded as bicistronic (two-gene) operons that encode two proteins: a toxin and a neutralizing antitoxin. Using our tool NetFlax (standing for Network-FlaGs for toxins and antitoxins), we have performed a large-scale bioinformatic analysis of proteinaceous TAs, revealing interconnected clusters constituting a core network of TA-like gene pairs. To understand the structural basis of toxin neutralization by antitoxins, we have predicted the structures of 3,419 complexes with AlphaFold2. Together with mutagenesis and functional assays, our structural predictions provide insights into the neutralizing mechanism of the hyperpromiscuous Panacea antitoxin domain. In antitoxins composed of standalone Panacea, the domain mediates direct toxin neutralization, while in multidomain antitoxins the neutralization is mediated by other domains, such as PAD1, Phd-C, and ZFD. We hypothesize that Panacea acts as a sensor that regulates TA activation. We have experimentally validated 16 NetFlax TA systems and used domain annotations and metabolic labeling assays to predict their potential mechanisms of toxicity (such as membrane disruption, and inhibition of cell division or protein synthesis) as well as biological functions (such as antiphage defense). We have validated the antiphage activity of a RosmerTA system encoded by Gordonia phage Kita, and used fluorescence microscopy to confirm its predicted membrane-depolarizing activity. The interactive version of the NetFlax TA network that includes structural predictions can be accessed at http://netflax.webflags.se/. |
format | Online Article Text |
id | pubmed-10440598 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-104405982023-08-22 The structural basis of hyperpromiscuity in a core combinatorial network of type II toxin–antitoxin and related phage defense systems Ernits, Karin Saha, Chayan Kumar Brodiazhenko, Tetiana Chouhan, Bhanu Shenoy, Aditi Buttress, Jessica A. Duque-Pedraza, Julián J. Bojar, Veda Nakamoto, Jose A. Kurata, Tatsuaki Egorov, Artyom A. Shyrokova, Lena Johansson, Marcus J. O. Mets, Toomas Rustamova, Aytan Džigurski, Jelisaveta Tenson, Tanel Garcia-Pino, Abel Strahl, Henrik Elofsson, Arne Hauryliuk, Vasili Atkinson, Gemma C. Proc Natl Acad Sci U S A Biological Sciences Toxin-antitoxin (TA) systems are a large group of small genetic modules found in prokaryotes and their mobile genetic elements. Type II TAs are encoded as bicistronic (two-gene) operons that encode two proteins: a toxin and a neutralizing antitoxin. Using our tool NetFlax (standing for Network-FlaGs for toxins and antitoxins), we have performed a large-scale bioinformatic analysis of proteinaceous TAs, revealing interconnected clusters constituting a core network of TA-like gene pairs. To understand the structural basis of toxin neutralization by antitoxins, we have predicted the structures of 3,419 complexes with AlphaFold2. Together with mutagenesis and functional assays, our structural predictions provide insights into the neutralizing mechanism of the hyperpromiscuous Panacea antitoxin domain. In antitoxins composed of standalone Panacea, the domain mediates direct toxin neutralization, while in multidomain antitoxins the neutralization is mediated by other domains, such as PAD1, Phd-C, and ZFD. We hypothesize that Panacea acts as a sensor that regulates TA activation. We have experimentally validated 16 NetFlax TA systems and used domain annotations and metabolic labeling assays to predict their potential mechanisms of toxicity (such as membrane disruption, and inhibition of cell division or protein synthesis) as well as biological functions (such as antiphage defense). We have validated the antiphage activity of a RosmerTA system encoded by Gordonia phage Kita, and used fluorescence microscopy to confirm its predicted membrane-depolarizing activity. The interactive version of the NetFlax TA network that includes structural predictions can be accessed at http://netflax.webflags.se/. National Academy of Sciences 2023-08-09 2023-08-15 /pmc/articles/PMC10440598/ /pubmed/37556498 http://dx.doi.org/10.1073/pnas.2305393120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by/4.0/This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Biological Sciences Ernits, Karin Saha, Chayan Kumar Brodiazhenko, Tetiana Chouhan, Bhanu Shenoy, Aditi Buttress, Jessica A. Duque-Pedraza, Julián J. Bojar, Veda Nakamoto, Jose A. Kurata, Tatsuaki Egorov, Artyom A. Shyrokova, Lena Johansson, Marcus J. O. Mets, Toomas Rustamova, Aytan Džigurski, Jelisaveta Tenson, Tanel Garcia-Pino, Abel Strahl, Henrik Elofsson, Arne Hauryliuk, Vasili Atkinson, Gemma C. The structural basis of hyperpromiscuity in a core combinatorial network of type II toxin–antitoxin and related phage defense systems |
title | The structural basis of hyperpromiscuity in a core combinatorial network of type II toxin–antitoxin and related phage defense systems |
title_full | The structural basis of hyperpromiscuity in a core combinatorial network of type II toxin–antitoxin and related phage defense systems |
title_fullStr | The structural basis of hyperpromiscuity in a core combinatorial network of type II toxin–antitoxin and related phage defense systems |
title_full_unstemmed | The structural basis of hyperpromiscuity in a core combinatorial network of type II toxin–antitoxin and related phage defense systems |
title_short | The structural basis of hyperpromiscuity in a core combinatorial network of type II toxin–antitoxin and related phage defense systems |
title_sort | structural basis of hyperpromiscuity in a core combinatorial network of type ii toxin–antitoxin and related phage defense systems |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440598/ https://www.ncbi.nlm.nih.gov/pubmed/37556498 http://dx.doi.org/10.1073/pnas.2305393120 |
work_keys_str_mv | AT ernitskarin thestructuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT sahachayankumar thestructuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT brodiazhenkotetiana thestructuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT chouhanbhanu thestructuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT shenoyaditi thestructuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT buttressjessicaa thestructuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT duquepedrazajulianj thestructuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT bojarveda thestructuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT nakamotojosea thestructuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT kuratatatsuaki thestructuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT egorovartyoma thestructuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT shyrokovalena thestructuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT johanssonmarcusjo thestructuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT metstoomas thestructuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT rustamovaaytan thestructuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT dzigurskijelisaveta thestructuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT tensontanel thestructuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT garciapinoabel thestructuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT strahlhenrik thestructuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT elofssonarne thestructuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT hauryliukvasili thestructuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT atkinsongemmac thestructuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT ernitskarin structuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT sahachayankumar structuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT brodiazhenkotetiana structuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT chouhanbhanu structuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT shenoyaditi structuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT buttressjessicaa structuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT duquepedrazajulianj structuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT bojarveda structuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT nakamotojosea structuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT kuratatatsuaki structuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT egorovartyoma structuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT shyrokovalena structuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT johanssonmarcusjo structuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT metstoomas structuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT rustamovaaytan structuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT dzigurskijelisaveta structuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT tensontanel structuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT garciapinoabel structuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT strahlhenrik structuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT elofssonarne structuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT hauryliukvasili structuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems AT atkinsongemmac structuralbasisofhyperpromiscuityinacorecombinatorialnetworkoftypeiitoxinantitoxinandrelatedphagedefensesystems |