Cargando…

Large-scale survey of excitatory synapses reveals sublamina-specific and asymmetric synapse disassembly in a neurodegenerative circuit

In the nervous system, parallel circuits are organized in part by the lamina-specific compartmentalization of synaptic connections. In sensory systems such as mammalian retina, degenerating third-order neurons remodel their local presynaptic connectivity with second-order neurons. To determine wheth...

Descripción completa

Detalles Bibliográficos
Autores principales: Soliño, Manuel, Yu, Alfred, Della Santina, Luca, Ou, Yvonne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440711/
https://www.ncbi.nlm.nih.gov/pubmed/37609630
http://dx.doi.org/10.1016/j.isci.2023.107262
Descripción
Sumario:In the nervous system, parallel circuits are organized in part by the lamina-specific compartmentalization of synaptic connections. In sensory systems such as mammalian retina, degenerating third-order neurons remodel their local presynaptic connectivity with second-order neurons. To determine whether there are sublamina-specific perturbations after injury of adult retinal ganglion cells, we comprehensively analyzed excitatory synapses across the inner plexiform layer (IPL) where bipolar cells connect to ganglion cells. Here, we show that pre- and postsynaptic component loss occurs throughout the IPL in a sublamina-dependent fashion after transient intraocular pressure elevation. Partnered synaptic components are lost as neurodegeneration progresses, while unpartnered synaptic components remain stable. Furthermore, presynaptic components are either lost first or simultaneously with the postsynaptic component. Our results demonstrate that this degenerating neural circuit exhibits differential vulnerability of excitatory synapses depending on IPL depth, highlighting the ordered disassembly of synapses that is specific to laminar compartments of the retina.