Cargando…
A novel collaborative self-supervised learning method for radiomic data
The computer-aided disease diagnosis from radiomic data is important in many medical applications. However, developing such a technique relies on labeling radiological images, which is a time-consuming, labor-intensive, and expensive process. In this work, we present the first novel collaborative se...
Autores principales: | Li, Zhiyuan, Li, Hailong, Ralescu, Anca L., Dillman, Jonathan R., Parikh, Nehal A., He, Lili |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440826/ https://www.ncbi.nlm.nih.gov/pubmed/37321358 http://dx.doi.org/10.1016/j.neuroimage.2023.120229 |
Ejemplares similares
-
A novel Ontology-guided Attribute Partitioning ensemble learning model for early prediction of cognitive deficits using quantitative Structural MRI in very preterm infants
por: Li, Zhiyuan, et al.
Publicado: (2022) -
Deep Multimodal Learning From MRI and Clinical Data for Early Prediction of Neurodevelopmental Deficits in Very Preterm Infants
por: He, Lili, et al.
Publicado: (2021) -
A Semi-Supervised Graph Convolutional Network for Early Prediction of Motor Abnormalities in Very Preterm Infants
por: Li, Hailong, et al.
Publicado: (2023) -
Multi-Contrast MRI Image Synthesis Using Switchable Cycle-Consistent Generative Adversarial Networks
por: Zhang, Huixian, et al.
Publicado: (2022) -
A multi-task, multi-stage deep transfer learning model for early prediction of neurodevelopment in very preterm infants
por: He, Lili, et al.
Publicado: (2020)