Cargando…
Kidney function, albuminuria, and their modification by genetic factors and risk of incident dementia in UK Biobank
BACKGROUND: Associations between kidney function and dementia risk are inconclusive. Chronic kidney disease (CKD) severity is determined by levels of both estimated glomerular filtration rate (eGFR) and the urine albumin to creatinine ratio (ACR). However, whether there is a graded increase in demen...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440913/ https://www.ncbi.nlm.nih.gov/pubmed/37605228 http://dx.doi.org/10.1186/s13195-023-01248-z |
Sumario: | BACKGROUND: Associations between kidney function and dementia risk are inconclusive. Chronic kidney disease (CKD) severity is determined by levels of both estimated glomerular filtration rate (eGFR) and the urine albumin to creatinine ratio (ACR). However, whether there is a graded increase in dementia risk for worse eGFR in each ACR category is unclear. Also, whether genetic risk for dementia impacts the associations is unknown. The current study aims to investigate the associations between eGFR and albuminuria with dementia risk both individually and jointly, whether the associations vary by different follow-up periods, and whether genetic factors modified the associations. METHODS: In 202,702 participants aged ≥ 60 years from the UK Biobank, Cox proportional-hazards models were used to examine the associations between eGFR and urine albumin creatinine ratio (ACR) with risk of incident dementia. GFR was estimated based on serum creatinine, cystatin C, or both. The models were restricted to different follow-up periods (< 5 years, 5–10 years, and ≥ 10 years) to investigate potential reverse causation. RESULTS: Over 15 years of follow-up, 6,042 participants developed dementia. Decreased kidney function (eGFR < 60 ml/min/1.73m(2)) was associated with an increased risk of dementia (Hazard Ratio [HR] = 1.42, 95% Confidence Interval [CI] 1.28–1.58), compared to normal kidney function (≥ 90 ml/min/1.73m(2)). The strength of the association remained consistent when the models were restricted to different periods of follow-up. The HRs for incident dementia were 1.16 (95% CI 1.07–1.26) and 2.24 (95% CI 1.79–2.80) for moderate (3-30 mg/mmol) and severely increased ACR (≥ 30 mg/mmol) compared to normal ACR (< 3 mg/mmol). Dose–response associations were observed when combining eGFR and ACR, with those in the severest eGFR and ACR group having the greatest risk of dementia (HR = 4.70, 95% CI 2.34–9.43). APOE status significantly modified the association (p = 0.04), with stronger associations observed among participants with a lower genetic risk of dementia. There was no evidence of an interaction between kidney function and non-APOE polygenic risk of dementia with dementia risk (p = 0.42). CONCLUSIONS: Kidney dysfunction and albuminuria were individually and jointly associated with higher dementia risk. The associations were greater amongst participants with a lower genetic risk of dementia based on APOE, but not non-APOE polygenic risk. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13195-023-01248-z. |
---|