Cargando…
Genome-wide scan for runs of homozygosity in South American Camelids
BACKGROUND: Alpaca (Vicugna pacos), llama (Lama glama), vicugna (Vicugna vicugna) and guanaco (Lama guanicoe), are the camelid species distributed over the Andean high-altitude grasslands, the Altiplano, and the Patagonian arid steppes. Despite the wide interest on these animals, most of the loci un...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440933/ https://www.ncbi.nlm.nih.gov/pubmed/37605116 http://dx.doi.org/10.1186/s12864-023-09547-3 |
_version_ | 1785093260828475392 |
---|---|
author | Pallotti, Stefano Picciolini, Matteo Antonini, Marco Renieri, Carlo Napolioni, Valerio |
author_facet | Pallotti, Stefano Picciolini, Matteo Antonini, Marco Renieri, Carlo Napolioni, Valerio |
author_sort | Pallotti, Stefano |
collection | PubMed |
description | BACKGROUND: Alpaca (Vicugna pacos), llama (Lama glama), vicugna (Vicugna vicugna) and guanaco (Lama guanicoe), are the camelid species distributed over the Andean high-altitude grasslands, the Altiplano, and the Patagonian arid steppes. Despite the wide interest on these animals, most of the loci under selection are still unknown. Using whole-genome sequencing (WGS) data we investigated the occurrence and the distribution of Runs Of Homozygosity (ROHs) across the South American Camelids (SACs) genome to identify the genetic relationship between the four species and the potential signatures of selection. RESULTS: A total of 37 WGS samples covering the four species was included in the final analysis. The multi-dimensional scaling approach showed a clear separation between the four species; however, admixture analysis suggested a strong genetic introgression from vicugna and llama to alpaca. Conversely, very low genetic admixture of the guanaco with the other SACs was found. The four species did not show significant differences in the number, length of ROHs (100-500 kb) and genomic inbreeding values. Longer ROHs (> 500 kb) were found almost exclusively in alpaca. Seven overlapping ROHs were shared by alpacas, encompassing nine loci (FGF5, LOC107034918, PRDM8, ANTXR2, LOC102534792, BSN, LOC116284892, DAG1 and RIC8B) while nine overlapping ROHs were found in llama with twenty-five loci annotated (ERC2, FZD9, BAZ1B, BCL7B, LOC116284208, TBL2, MLXIPL, PHF20, TRNAD-AUC, LOC116284365, RBM39, ARFGEF2, DCAF5, EXD2, HSPB11, LRRC42, LDLRAD1, TMEM59, LOC107033213, TCEANC2, LOC102545169, LOC116278408, SMIM15, NDUFAF2 and RCOR1). Four overlapping ROHs, with three annotated loci (DLG1, KAT6B and PDE4D) and three overlapping ROHs, with seven annotated genes (ATP6V1E1, BCL2L13, LOC116276952, BID, KAT6B, LOC116282667 and LOC107034552), were detected for vicugna and guanaco, respectively. CONCLUSIONS: The signatures of selection revealed genomic areas potentially selected for production traits as well as for natural adaptation to harsh environment. Alpaca and llama hint a selection driven by environment as well as by farming purpose while vicugna and guanaco showed selection signals for adaptation to harsh environment. Interesting, signatures of selection on KAT6B gene were identified for both vicugna and guanaco, suggesting a positive effect on wild populations fitness. Such information may be of interest to further ecological and animal production studies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-023-09547-3. |
format | Online Article Text |
id | pubmed-10440933 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-104409332023-08-22 Genome-wide scan for runs of homozygosity in South American Camelids Pallotti, Stefano Picciolini, Matteo Antonini, Marco Renieri, Carlo Napolioni, Valerio BMC Genomics Research BACKGROUND: Alpaca (Vicugna pacos), llama (Lama glama), vicugna (Vicugna vicugna) and guanaco (Lama guanicoe), are the camelid species distributed over the Andean high-altitude grasslands, the Altiplano, and the Patagonian arid steppes. Despite the wide interest on these animals, most of the loci under selection are still unknown. Using whole-genome sequencing (WGS) data we investigated the occurrence and the distribution of Runs Of Homozygosity (ROHs) across the South American Camelids (SACs) genome to identify the genetic relationship between the four species and the potential signatures of selection. RESULTS: A total of 37 WGS samples covering the four species was included in the final analysis. The multi-dimensional scaling approach showed a clear separation between the four species; however, admixture analysis suggested a strong genetic introgression from vicugna and llama to alpaca. Conversely, very low genetic admixture of the guanaco with the other SACs was found. The four species did not show significant differences in the number, length of ROHs (100-500 kb) and genomic inbreeding values. Longer ROHs (> 500 kb) were found almost exclusively in alpaca. Seven overlapping ROHs were shared by alpacas, encompassing nine loci (FGF5, LOC107034918, PRDM8, ANTXR2, LOC102534792, BSN, LOC116284892, DAG1 and RIC8B) while nine overlapping ROHs were found in llama with twenty-five loci annotated (ERC2, FZD9, BAZ1B, BCL7B, LOC116284208, TBL2, MLXIPL, PHF20, TRNAD-AUC, LOC116284365, RBM39, ARFGEF2, DCAF5, EXD2, HSPB11, LRRC42, LDLRAD1, TMEM59, LOC107033213, TCEANC2, LOC102545169, LOC116278408, SMIM15, NDUFAF2 and RCOR1). Four overlapping ROHs, with three annotated loci (DLG1, KAT6B and PDE4D) and three overlapping ROHs, with seven annotated genes (ATP6V1E1, BCL2L13, LOC116276952, BID, KAT6B, LOC116282667 and LOC107034552), were detected for vicugna and guanaco, respectively. CONCLUSIONS: The signatures of selection revealed genomic areas potentially selected for production traits as well as for natural adaptation to harsh environment. Alpaca and llama hint a selection driven by environment as well as by farming purpose while vicugna and guanaco showed selection signals for adaptation to harsh environment. Interesting, signatures of selection on KAT6B gene were identified for both vicugna and guanaco, suggesting a positive effect on wild populations fitness. Such information may be of interest to further ecological and animal production studies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-023-09547-3. BioMed Central 2023-08-21 /pmc/articles/PMC10440933/ /pubmed/37605116 http://dx.doi.org/10.1186/s12864-023-09547-3 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Pallotti, Stefano Picciolini, Matteo Antonini, Marco Renieri, Carlo Napolioni, Valerio Genome-wide scan for runs of homozygosity in South American Camelids |
title | Genome-wide scan for runs of homozygosity in South American Camelids |
title_full | Genome-wide scan for runs of homozygosity in South American Camelids |
title_fullStr | Genome-wide scan for runs of homozygosity in South American Camelids |
title_full_unstemmed | Genome-wide scan for runs of homozygosity in South American Camelids |
title_short | Genome-wide scan for runs of homozygosity in South American Camelids |
title_sort | genome-wide scan for runs of homozygosity in south american camelids |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440933/ https://www.ncbi.nlm.nih.gov/pubmed/37605116 http://dx.doi.org/10.1186/s12864-023-09547-3 |
work_keys_str_mv | AT pallottistefano genomewidescanforrunsofhomozygosityinsouthamericancamelids AT picciolinimatteo genomewidescanforrunsofhomozygosityinsouthamericancamelids AT antoninimarco genomewidescanforrunsofhomozygosityinsouthamericancamelids AT reniericarlo genomewidescanforrunsofhomozygosityinsouthamericancamelids AT napolionivalerio genomewidescanforrunsofhomozygosityinsouthamericancamelids |