Cargando…

Stiffness anisotropy coordinates supracellular contractility driving long-range myotube-ECM alignment

In skeletal muscle tissue, injury-related changes in stiffness activate muscle stem cells through mechanosensitive signaling pathways. Functional muscle tissue regeneration also requires the effective coordination of myoblast proliferation, migration, polarization, differentiation, and fusion across...

Descripción completa

Detalles Bibliográficos
Autores principales: Skillin, Nathaniel P., Kirkpatrick, Bruce E., Herbert, Katie M., Nelson, Benjamin R., Hach, Grace K., Günay, Kemal Arda, Khan, Ryan M., DelRio, Frank W., White, Timothy J., Anseth, Kristi S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441277/
https://www.ncbi.nlm.nih.gov/pubmed/37609145
http://dx.doi.org/10.1101/2023.08.08.552197
_version_ 1785093345421295616
author Skillin, Nathaniel P.
Kirkpatrick, Bruce E.
Herbert, Katie M.
Nelson, Benjamin R.
Hach, Grace K.
Günay, Kemal Arda
Khan, Ryan M.
DelRio, Frank W.
White, Timothy J.
Anseth, Kristi S.
author_facet Skillin, Nathaniel P.
Kirkpatrick, Bruce E.
Herbert, Katie M.
Nelson, Benjamin R.
Hach, Grace K.
Günay, Kemal Arda
Khan, Ryan M.
DelRio, Frank W.
White, Timothy J.
Anseth, Kristi S.
author_sort Skillin, Nathaniel P.
collection PubMed
description In skeletal muscle tissue, injury-related changes in stiffness activate muscle stem cells through mechanosensitive signaling pathways. Functional muscle tissue regeneration also requires the effective coordination of myoblast proliferation, migration, polarization, differentiation, and fusion across multiple length scales. Here, we demonstrate that substrate stiffness anisotropy coordinates contractility-driven collective cellular dynamics resulting in C2C12 myotube alignment over millimeter-scale distances. When cultured on mechanically anisotropic liquid crystalline polymer networks (LCNs) lacking topographic features that could confer contact guidance, C2C12 myoblasts collectively polarize in the stiffest direction of the substrate. Cellular coordination is amplified through reciprocal cell-ECM dynamics that emerge during fusion, driving global myotube-ECM ordering. Conversely, myotube alignment was restricted to small local domains with no directional preference on mechanically isotropic LCNs of same chemical formulation. These findings reveal a role for stiffness anisotropy in coordinating emergent collective cellular dynamics, with implications for understanding skeletal muscle tissue development and regeneration.
format Online
Article
Text
id pubmed-10441277
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-104412772023-08-22 Stiffness anisotropy coordinates supracellular contractility driving long-range myotube-ECM alignment Skillin, Nathaniel P. Kirkpatrick, Bruce E. Herbert, Katie M. Nelson, Benjamin R. Hach, Grace K. Günay, Kemal Arda Khan, Ryan M. DelRio, Frank W. White, Timothy J. Anseth, Kristi S. bioRxiv Article In skeletal muscle tissue, injury-related changes in stiffness activate muscle stem cells through mechanosensitive signaling pathways. Functional muscle tissue regeneration also requires the effective coordination of myoblast proliferation, migration, polarization, differentiation, and fusion across multiple length scales. Here, we demonstrate that substrate stiffness anisotropy coordinates contractility-driven collective cellular dynamics resulting in C2C12 myotube alignment over millimeter-scale distances. When cultured on mechanically anisotropic liquid crystalline polymer networks (LCNs) lacking topographic features that could confer contact guidance, C2C12 myoblasts collectively polarize in the stiffest direction of the substrate. Cellular coordination is amplified through reciprocal cell-ECM dynamics that emerge during fusion, driving global myotube-ECM ordering. Conversely, myotube alignment was restricted to small local domains with no directional preference on mechanically isotropic LCNs of same chemical formulation. These findings reveal a role for stiffness anisotropy in coordinating emergent collective cellular dynamics, with implications for understanding skeletal muscle tissue development and regeneration. Cold Spring Harbor Laboratory 2023-08-11 /pmc/articles/PMC10441277/ /pubmed/37609145 http://dx.doi.org/10.1101/2023.08.08.552197 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Skillin, Nathaniel P.
Kirkpatrick, Bruce E.
Herbert, Katie M.
Nelson, Benjamin R.
Hach, Grace K.
Günay, Kemal Arda
Khan, Ryan M.
DelRio, Frank W.
White, Timothy J.
Anseth, Kristi S.
Stiffness anisotropy coordinates supracellular contractility driving long-range myotube-ECM alignment
title Stiffness anisotropy coordinates supracellular contractility driving long-range myotube-ECM alignment
title_full Stiffness anisotropy coordinates supracellular contractility driving long-range myotube-ECM alignment
title_fullStr Stiffness anisotropy coordinates supracellular contractility driving long-range myotube-ECM alignment
title_full_unstemmed Stiffness anisotropy coordinates supracellular contractility driving long-range myotube-ECM alignment
title_short Stiffness anisotropy coordinates supracellular contractility driving long-range myotube-ECM alignment
title_sort stiffness anisotropy coordinates supracellular contractility driving long-range myotube-ecm alignment
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441277/
https://www.ncbi.nlm.nih.gov/pubmed/37609145
http://dx.doi.org/10.1101/2023.08.08.552197
work_keys_str_mv AT skillinnathanielp stiffnessanisotropycoordinatessupracellularcontractilitydrivinglongrangemyotubeecmalignment
AT kirkpatrickbrucee stiffnessanisotropycoordinatessupracellularcontractilitydrivinglongrangemyotubeecmalignment
AT herbertkatiem stiffnessanisotropycoordinatessupracellularcontractilitydrivinglongrangemyotubeecmalignment
AT nelsonbenjaminr stiffnessanisotropycoordinatessupracellularcontractilitydrivinglongrangemyotubeecmalignment
AT hachgracek stiffnessanisotropycoordinatessupracellularcontractilitydrivinglongrangemyotubeecmalignment
AT gunaykemalarda stiffnessanisotropycoordinatessupracellularcontractilitydrivinglongrangemyotubeecmalignment
AT khanryanm stiffnessanisotropycoordinatessupracellularcontractilitydrivinglongrangemyotubeecmalignment
AT delriofrankw stiffnessanisotropycoordinatessupracellularcontractilitydrivinglongrangemyotubeecmalignment
AT whitetimothyj stiffnessanisotropycoordinatessupracellularcontractilitydrivinglongrangemyotubeecmalignment
AT ansethkristis stiffnessanisotropycoordinatessupracellularcontractilitydrivinglongrangemyotubeecmalignment