Cargando…
Enhancing Fairness in Disease Prediction by Optimizing Multiple Domain Adversarial Networks
Predictive models in biomedicine need to ensure equitable and reliable outcomes for the populations they are applied to. Unfortunately, biases in medical predictions can lead to unfair treatment and widening disparities, underscoring the need for effective techniques to address these issues. To enha...
Autores principales: | Li, Bin, Shi, Xinghua, Gao, Hongchang, Jiang, Xiaoqian, Zhang, Kai, Harmanci, Arif O, Malin, Bradley |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441334/ https://www.ncbi.nlm.nih.gov/pubmed/37609241 http://dx.doi.org/10.1101/2023.08.04.551906 |
Ejemplares similares
-
Fair classification via domain adaptation: A dual adversarial learning approach
por: Liang, Yueqing, et al.
Publicado: (2023) -
Single-cell assignment using multiple-adversarial domain adaptation network with large-scale references
por: Ren, Pengfei, et al.
Publicado: (2023) -
Domain Adaptation for Imitation Learning Using Generative Adversarial Network
por: Nguyen Duc, Tho, et al.
Publicado: (2021) -
Designing optimized drug candidates with Generative Adversarial Network
por: Abbasi, Maryam, et al.
Publicado: (2022) -
Semantic consistency generative adversarial network for cross-modality domain adaptation in ultrasound thyroid nodule classification
por: Zhao, Jun, et al.
Publicado: (2022)