Cargando…
AUTOSURV: INTERPRETABLE DEEP LEARNING FRAMEWORK FOR CANCER SURVIVAL ANALYSIS INCORPORATING CLINICAL AND MULTI-OMICS DATA
Accurate prognosis for cancer patients can provide critical information for optimizing treatment plans and improving life quality. Combining omics data and demographic/clinical information can offer a more comprehensive view of cancer prognosis than using omics or clinical data alone and can reveal...
Autores principales: | Jiang, Lindong, Xu, Chao, Bai, Yuntong, Liu, Anqi, Gong, Yun, Wang, Yu-Ping, Deng, Hong-Wen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441464/ https://www.ncbi.nlm.nih.gov/pubmed/37609286 http://dx.doi.org/10.21203/rs.3.rs-2486756/v1 |
Ejemplares similares
-
DeepOmix: A scalable and interpretable multi-omics deep learning framework and application in cancer survival analysis
por: Zhao, Lianhe, et al.
Publicado: (2021) -
Interpretable meta-learning of multi-omics data for survival analysis and pathway enrichment
por: Cho, Hyun Jae, et al.
Publicado: (2023) -
OmiEmbed: A Unified Multi-Task Deep Learning Framework for Multi-Omics Data
por: Zhang, Xiaoyu, et al.
Publicado: (2021) -
CLCLSA: Cross-omics Linked embedding with Contrastive Learning and Self Attention for multi-omics integration with incomplete multi-omics data
por: Zhao, Chen, et al.
Publicado: (2023) -
CLCLSA: Cross-omics Linked embedding with Contrastive Learning and Self Attention for multi-omics integration with incomplete multi-omics data
por: Zhao, Chen, et al.
Publicado: (2023)