Cargando…
Integration of population-level data sources into an individual-level clinical prediction model for dengue virus test positivity
The differentiation of dengue virus (DENV) infection, a major cause of acute febrile illness in tropical regions, from other etiologies, may help prioritize laboratory testing and limit the inappropriate use of antibiotics. While traditional clinical prediction models focus on individual patient-lev...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441499/ https://www.ncbi.nlm.nih.gov/pubmed/37609267 http://dx.doi.org/10.1101/2023.08.08.23293840 |
_version_ | 1785093386754064384 |
---|---|
author | Williams, RJ Brintz, Ben J. Santos, Gabriel Ribeiro Dos Huang, Angkana Buddhari, Darunee Kaewhiran, Surachai Iamsirithaworn, Sopon Rothman, Alan L. Thomas, Stephen Farmer, Aaron Fernandez, Stefan Cummings, Derek A T Anderson, Kathryn B Salje, Henrik Leung, Daniel T. |
author_facet | Williams, RJ Brintz, Ben J. Santos, Gabriel Ribeiro Dos Huang, Angkana Buddhari, Darunee Kaewhiran, Surachai Iamsirithaworn, Sopon Rothman, Alan L. Thomas, Stephen Farmer, Aaron Fernandez, Stefan Cummings, Derek A T Anderson, Kathryn B Salje, Henrik Leung, Daniel T. |
author_sort | Williams, RJ |
collection | PubMed |
description | The differentiation of dengue virus (DENV) infection, a major cause of acute febrile illness in tropical regions, from other etiologies, may help prioritize laboratory testing and limit the inappropriate use of antibiotics. While traditional clinical prediction models focus on individual patient-level parameters, we hypothesize that for infectious diseases, population-level data sources may improve predictive ability. To create a clinical prediction model that integrates patient-extrinsic data for identifying DENV among febrile patients presenting to a hospital in Thailand, we fit random forest classifiers combining clinical data with climate and population-level epidemiologic data. In cross validation, compared to a parsimonious model with the top clinical predictors, a model with the addition of climate data, reconstructed susceptibility estimates, force of infection estimates, and a recent case clustering metric, significantly improved model performance. |
format | Online Article Text |
id | pubmed-10441499 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-104414992023-08-22 Integration of population-level data sources into an individual-level clinical prediction model for dengue virus test positivity Williams, RJ Brintz, Ben J. Santos, Gabriel Ribeiro Dos Huang, Angkana Buddhari, Darunee Kaewhiran, Surachai Iamsirithaworn, Sopon Rothman, Alan L. Thomas, Stephen Farmer, Aaron Fernandez, Stefan Cummings, Derek A T Anderson, Kathryn B Salje, Henrik Leung, Daniel T. medRxiv Article The differentiation of dengue virus (DENV) infection, a major cause of acute febrile illness in tropical regions, from other etiologies, may help prioritize laboratory testing and limit the inappropriate use of antibiotics. While traditional clinical prediction models focus on individual patient-level parameters, we hypothesize that for infectious diseases, population-level data sources may improve predictive ability. To create a clinical prediction model that integrates patient-extrinsic data for identifying DENV among febrile patients presenting to a hospital in Thailand, we fit random forest classifiers combining clinical data with climate and population-level epidemiologic data. In cross validation, compared to a parsimonious model with the top clinical predictors, a model with the addition of climate data, reconstructed susceptibility estimates, force of infection estimates, and a recent case clustering metric, significantly improved model performance. Cold Spring Harbor Laboratory 2023-08-13 /pmc/articles/PMC10441499/ /pubmed/37609267 http://dx.doi.org/10.1101/2023.08.08.23293840 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Williams, RJ Brintz, Ben J. Santos, Gabriel Ribeiro Dos Huang, Angkana Buddhari, Darunee Kaewhiran, Surachai Iamsirithaworn, Sopon Rothman, Alan L. Thomas, Stephen Farmer, Aaron Fernandez, Stefan Cummings, Derek A T Anderson, Kathryn B Salje, Henrik Leung, Daniel T. Integration of population-level data sources into an individual-level clinical prediction model for dengue virus test positivity |
title | Integration of population-level data sources into an individual-level clinical prediction model for dengue virus test positivity |
title_full | Integration of population-level data sources into an individual-level clinical prediction model for dengue virus test positivity |
title_fullStr | Integration of population-level data sources into an individual-level clinical prediction model for dengue virus test positivity |
title_full_unstemmed | Integration of population-level data sources into an individual-level clinical prediction model for dengue virus test positivity |
title_short | Integration of population-level data sources into an individual-level clinical prediction model for dengue virus test positivity |
title_sort | integration of population-level data sources into an individual-level clinical prediction model for dengue virus test positivity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441499/ https://www.ncbi.nlm.nih.gov/pubmed/37609267 http://dx.doi.org/10.1101/2023.08.08.23293840 |
work_keys_str_mv | AT williamsrj integrationofpopulationleveldatasourcesintoanindividuallevelclinicalpredictionmodelfordenguevirustestpositivity AT brintzbenj integrationofpopulationleveldatasourcesintoanindividuallevelclinicalpredictionmodelfordenguevirustestpositivity AT santosgabrielribeirodos integrationofpopulationleveldatasourcesintoanindividuallevelclinicalpredictionmodelfordenguevirustestpositivity AT huangangkana integrationofpopulationleveldatasourcesintoanindividuallevelclinicalpredictionmodelfordenguevirustestpositivity AT buddharidarunee integrationofpopulationleveldatasourcesintoanindividuallevelclinicalpredictionmodelfordenguevirustestpositivity AT kaewhiransurachai integrationofpopulationleveldatasourcesintoanindividuallevelclinicalpredictionmodelfordenguevirustestpositivity AT iamsirithawornsopon integrationofpopulationleveldatasourcesintoanindividuallevelclinicalpredictionmodelfordenguevirustestpositivity AT rothmanalanl integrationofpopulationleveldatasourcesintoanindividuallevelclinicalpredictionmodelfordenguevirustestpositivity AT thomasstephen integrationofpopulationleveldatasourcesintoanindividuallevelclinicalpredictionmodelfordenguevirustestpositivity AT farmeraaron integrationofpopulationleveldatasourcesintoanindividuallevelclinicalpredictionmodelfordenguevirustestpositivity AT fernandezstefan integrationofpopulationleveldatasourcesintoanindividuallevelclinicalpredictionmodelfordenguevirustestpositivity AT cummingsderekat integrationofpopulationleveldatasourcesintoanindividuallevelclinicalpredictionmodelfordenguevirustestpositivity AT andersonkathrynb integrationofpopulationleveldatasourcesintoanindividuallevelclinicalpredictionmodelfordenguevirustestpositivity AT saljehenrik integrationofpopulationleveldatasourcesintoanindividuallevelclinicalpredictionmodelfordenguevirustestpositivity AT leungdanielt integrationofpopulationleveldatasourcesintoanindividuallevelclinicalpredictionmodelfordenguevirustestpositivity |