Cargando…

Integration of population-level data sources into an individual-level clinical prediction model for dengue virus test positivity

The differentiation of dengue virus (DENV) infection, a major cause of acute febrile illness in tropical regions, from other etiologies, may help prioritize laboratory testing and limit the inappropriate use of antibiotics. While traditional clinical prediction models focus on individual patient-lev...

Descripción completa

Detalles Bibliográficos
Autores principales: Williams, RJ, Brintz, Ben J., Santos, Gabriel Ribeiro Dos, Huang, Angkana, Buddhari, Darunee, Kaewhiran, Surachai, Iamsirithaworn, Sopon, Rothman, Alan L., Thomas, Stephen, Farmer, Aaron, Fernandez, Stefan, Cummings, Derek A T, Anderson, Kathryn B, Salje, Henrik, Leung, Daniel T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441499/
https://www.ncbi.nlm.nih.gov/pubmed/37609267
http://dx.doi.org/10.1101/2023.08.08.23293840
_version_ 1785093386754064384
author Williams, RJ
Brintz, Ben J.
Santos, Gabriel Ribeiro Dos
Huang, Angkana
Buddhari, Darunee
Kaewhiran, Surachai
Iamsirithaworn, Sopon
Rothman, Alan L.
Thomas, Stephen
Farmer, Aaron
Fernandez, Stefan
Cummings, Derek A T
Anderson, Kathryn B
Salje, Henrik
Leung, Daniel T.
author_facet Williams, RJ
Brintz, Ben J.
Santos, Gabriel Ribeiro Dos
Huang, Angkana
Buddhari, Darunee
Kaewhiran, Surachai
Iamsirithaworn, Sopon
Rothman, Alan L.
Thomas, Stephen
Farmer, Aaron
Fernandez, Stefan
Cummings, Derek A T
Anderson, Kathryn B
Salje, Henrik
Leung, Daniel T.
author_sort Williams, RJ
collection PubMed
description The differentiation of dengue virus (DENV) infection, a major cause of acute febrile illness in tropical regions, from other etiologies, may help prioritize laboratory testing and limit the inappropriate use of antibiotics. While traditional clinical prediction models focus on individual patient-level parameters, we hypothesize that for infectious diseases, population-level data sources may improve predictive ability. To create a clinical prediction model that integrates patient-extrinsic data for identifying DENV among febrile patients presenting to a hospital in Thailand, we fit random forest classifiers combining clinical data with climate and population-level epidemiologic data. In cross validation, compared to a parsimonious model with the top clinical predictors, a model with the addition of climate data, reconstructed susceptibility estimates, force of infection estimates, and a recent case clustering metric, significantly improved model performance.
format Online
Article
Text
id pubmed-10441499
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-104414992023-08-22 Integration of population-level data sources into an individual-level clinical prediction model for dengue virus test positivity Williams, RJ Brintz, Ben J. Santos, Gabriel Ribeiro Dos Huang, Angkana Buddhari, Darunee Kaewhiran, Surachai Iamsirithaworn, Sopon Rothman, Alan L. Thomas, Stephen Farmer, Aaron Fernandez, Stefan Cummings, Derek A T Anderson, Kathryn B Salje, Henrik Leung, Daniel T. medRxiv Article The differentiation of dengue virus (DENV) infection, a major cause of acute febrile illness in tropical regions, from other etiologies, may help prioritize laboratory testing and limit the inappropriate use of antibiotics. While traditional clinical prediction models focus on individual patient-level parameters, we hypothesize that for infectious diseases, population-level data sources may improve predictive ability. To create a clinical prediction model that integrates patient-extrinsic data for identifying DENV among febrile patients presenting to a hospital in Thailand, we fit random forest classifiers combining clinical data with climate and population-level epidemiologic data. In cross validation, compared to a parsimonious model with the top clinical predictors, a model with the addition of climate data, reconstructed susceptibility estimates, force of infection estimates, and a recent case clustering metric, significantly improved model performance. Cold Spring Harbor Laboratory 2023-08-13 /pmc/articles/PMC10441499/ /pubmed/37609267 http://dx.doi.org/10.1101/2023.08.08.23293840 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Williams, RJ
Brintz, Ben J.
Santos, Gabriel Ribeiro Dos
Huang, Angkana
Buddhari, Darunee
Kaewhiran, Surachai
Iamsirithaworn, Sopon
Rothman, Alan L.
Thomas, Stephen
Farmer, Aaron
Fernandez, Stefan
Cummings, Derek A T
Anderson, Kathryn B
Salje, Henrik
Leung, Daniel T.
Integration of population-level data sources into an individual-level clinical prediction model for dengue virus test positivity
title Integration of population-level data sources into an individual-level clinical prediction model for dengue virus test positivity
title_full Integration of population-level data sources into an individual-level clinical prediction model for dengue virus test positivity
title_fullStr Integration of population-level data sources into an individual-level clinical prediction model for dengue virus test positivity
title_full_unstemmed Integration of population-level data sources into an individual-level clinical prediction model for dengue virus test positivity
title_short Integration of population-level data sources into an individual-level clinical prediction model for dengue virus test positivity
title_sort integration of population-level data sources into an individual-level clinical prediction model for dengue virus test positivity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441499/
https://www.ncbi.nlm.nih.gov/pubmed/37609267
http://dx.doi.org/10.1101/2023.08.08.23293840
work_keys_str_mv AT williamsrj integrationofpopulationleveldatasourcesintoanindividuallevelclinicalpredictionmodelfordenguevirustestpositivity
AT brintzbenj integrationofpopulationleveldatasourcesintoanindividuallevelclinicalpredictionmodelfordenguevirustestpositivity
AT santosgabrielribeirodos integrationofpopulationleveldatasourcesintoanindividuallevelclinicalpredictionmodelfordenguevirustestpositivity
AT huangangkana integrationofpopulationleveldatasourcesintoanindividuallevelclinicalpredictionmodelfordenguevirustestpositivity
AT buddharidarunee integrationofpopulationleveldatasourcesintoanindividuallevelclinicalpredictionmodelfordenguevirustestpositivity
AT kaewhiransurachai integrationofpopulationleveldatasourcesintoanindividuallevelclinicalpredictionmodelfordenguevirustestpositivity
AT iamsirithawornsopon integrationofpopulationleveldatasourcesintoanindividuallevelclinicalpredictionmodelfordenguevirustestpositivity
AT rothmanalanl integrationofpopulationleveldatasourcesintoanindividuallevelclinicalpredictionmodelfordenguevirustestpositivity
AT thomasstephen integrationofpopulationleveldatasourcesintoanindividuallevelclinicalpredictionmodelfordenguevirustestpositivity
AT farmeraaron integrationofpopulationleveldatasourcesintoanindividuallevelclinicalpredictionmodelfordenguevirustestpositivity
AT fernandezstefan integrationofpopulationleveldatasourcesintoanindividuallevelclinicalpredictionmodelfordenguevirustestpositivity
AT cummingsderekat integrationofpopulationleveldatasourcesintoanindividuallevelclinicalpredictionmodelfordenguevirustestpositivity
AT andersonkathrynb integrationofpopulationleveldatasourcesintoanindividuallevelclinicalpredictionmodelfordenguevirustestpositivity
AT saljehenrik integrationofpopulationleveldatasourcesintoanindividuallevelclinicalpredictionmodelfordenguevirustestpositivity
AT leungdanielt integrationofpopulationleveldatasourcesintoanindividuallevelclinicalpredictionmodelfordenguevirustestpositivity