Cargando…

Predicting phenotypes of elderly from resting state fMRI

Machine learning techniques are increasingly embraced in neuroimaging studies of healthy and diseased human brains. They have been used successfully in predicting phenotypes, or even clinical outcomes, and in turning functional connectome metrics into phenotype biomarkers of both healthy individuals...

Descripción completa

Detalles Bibliográficos
Autores principales: Verovnik, Barbara, Hajduk, Stefan, Hulle, Marc Van
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Journal Experts 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441519/
https://www.ncbi.nlm.nih.gov/pubmed/37609310
http://dx.doi.org/10.21203/rs.3.rs-3201603/v1
Descripción
Sumario:Machine learning techniques are increasingly embraced in neuroimaging studies of healthy and diseased human brains. They have been used successfully in predicting phenotypes, or even clinical outcomes, and in turning functional connectome metrics into phenotype biomarkers of both healthy individuals and patients. In this study, we used functional connectivity characteristics based on resting state functional magnetic resonance imaging data to accurately classify healthy elderly in terms of their phenotype status. Additionally, as the functional connections that contribute to the classification can be identified, we can draw inferences about the network that is predictive of the investigated phenotypes. Our proposed pipeline for phenotype classification can be expanded to other phenotypes (cognitive, psychological, clinical) and possibly be used to shed light on the modifiable risk and protective factors in normative and pathological brain aging.