Cargando…
Predicting phenotypes of elderly from resting state fMRI
Machine learning techniques are increasingly embraced in neuroimaging studies of healthy and diseased human brains. They have been used successfully in predicting phenotypes, or even clinical outcomes, and in turning functional connectome metrics into phenotype biomarkers of both healthy individuals...
Autores principales: | Verovnik, Barbara, Hajduk, Stefan, Hulle, Marc Van |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441519/ https://www.ncbi.nlm.nih.gov/pubmed/37609310 http://dx.doi.org/10.21203/rs.3.rs-3201603/v1 |
Ejemplares similares
-
Prediction of Task-Related BOLD fMRI with Amplitude Signatures of Resting-State fMRI
por: Kannurpatti, Sridhar S., et al.
Publicado: (2012) -
Network Connectivity in Epilepsy: Resting State fMRI and EEG–fMRI Contributions
por: Centeno, Maria, et al.
Publicado: (2014) -
On consciousness, resting state fMRI, and neurodynamics
por: Lundervold, Arvid
Publicado: (2010) -
A DCM for resting state fMRI
por: Friston, Karl J., et al.
Publicado: (2014) -
On nodes and modes in resting state fMRI
por: Friston, Karl J., et al.
Publicado: (2014)