Cargando…
Implementation and prospective real-time evaluation of a generalized system for in-clinic deployment and validation of machine learning models in radiology
The medical imaging community has embraced Machine Learning (ML) as evidenced by the rapid increase in the number of ML models being developed, but validating and deploying these models in the clinic remains a challenge. The engineering involved in integrating and assessing the efficacy of ML models...
Autores principales: | Hawkins, James R., Olson, Marram P., Harouni, Ahmed, Qin, Ming Melvin, Hess, Christopher P., Majumdar, Sharmila, Crane, Jason C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441783/ https://www.ncbi.nlm.nih.gov/pubmed/37603542 http://dx.doi.org/10.1371/journal.pdig.0000227 |
Ejemplares similares
-
SIVIC: Open-Source, Standards-Based Software for DICOM MR Spectroscopy Workflows
por: Crane, Jason C., et al.
Publicado: (2013) -
Key Technology Considerations in Developing and Deploying Machine Learning Models in Clinical Radiology Practice
por: Kulkarni, Viraj, et al.
Publicado: (2021) -
On-Field Deployment and Validation for Wearable Devices
por: Kuo, Calvin, et al.
Publicado: (2022) -
Development, Deployment, and Implementation of a Machine Learning Surgical Case Length Prediction Model and Prospective Evaluation
por: Zaribafzadeh, Hamed, et al.
Publicado: (2023) -
Patients’ views on the implementation of artificial intelligence in radiology: development and validation of a standardized questionnaire
por: Ongena, Yfke P., et al.
Publicado: (2019)