Cargando…
Evidence- and data-driven classification of low back pain via artificial intelligence: Protocol of the PREDICT-LBP study
In patients presenting with low back pain (LBP), once specific causes are excluded (fracture, infection, inflammatory arthritis, cancer, cauda equina and radiculopathy) many clinicians pose a diagnosis of non-specific LBP. Accordingly, current management of non-specific LBP is generic. There is a ne...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441794/ https://www.ncbi.nlm.nih.gov/pubmed/37603539 http://dx.doi.org/10.1371/journal.pone.0282346 |
_version_ | 1785093451481612288 |
---|---|
author | Belavy, Daniel L. Tagliaferri, Scott D. Tegenthoff, Martin Enax-Krumova, Elena Schlaffke, Lara Bühring, Björn Schulte, Tobias L. Schmidt, Sein Wilke, Hans-Joachim Angelova, Maia Trudel, Guy Ehrenbrusthoff, Katja Fitzgibbon, Bernadette Van Oosterwijck, Jessica Miller, Clint T. Owen, Patrick J. Bowe, Steven Döding, Rebekka Kaczorowski, Svenja |
author_facet | Belavy, Daniel L. Tagliaferri, Scott D. Tegenthoff, Martin Enax-Krumova, Elena Schlaffke, Lara Bühring, Björn Schulte, Tobias L. Schmidt, Sein Wilke, Hans-Joachim Angelova, Maia Trudel, Guy Ehrenbrusthoff, Katja Fitzgibbon, Bernadette Van Oosterwijck, Jessica Miller, Clint T. Owen, Patrick J. Bowe, Steven Döding, Rebekka Kaczorowski, Svenja |
author_sort | Belavy, Daniel L. |
collection | PubMed |
description | In patients presenting with low back pain (LBP), once specific causes are excluded (fracture, infection, inflammatory arthritis, cancer, cauda equina and radiculopathy) many clinicians pose a diagnosis of non-specific LBP. Accordingly, current management of non-specific LBP is generic. There is a need for a classification of non-specific LBP that is both data- and evidence-based assessing multi-dimensional pain-related factors in a large sample size. The “PRedictive Evidence Driven Intelligent Classification Tool for Low Back Pain” (PREDICT-LBP) project is a prospective cross-sectional study which will compare 300 women and men with non-specific LBP (aged 18–55 years) with 100 matched referents without a history of LBP. Participants will be recruited from the general public and local medical facilities. Data will be collected on spinal tissue (intervertebral disc composition and morphology, vertebral fat fraction and paraspinal muscle size and composition via magnetic resonance imaging [MRI]), central nervous system adaptation (pain thresholds, temporal summation of pain, brain resting state functional connectivity, structural connectivity and regional volumes via MRI), psychosocial factors (e.g. depression, anxiety) and other musculoskeletal pain symptoms. Dimensionality reduction, cluster validation and fuzzy c-means clustering methods, classification models, and relevant sensitivity analyses, will classify non-specific LBP patients into sub-groups. This project represents a first personalised diagnostic approach to non-specific LBP, with potential for widespread uptake in clinical practice. This project will provide evidence to support clinical trials assessing specific treatments approaches for potential subgroups of patients with non-specific LBP. The classification tool may lead to better patient outcomes and reduction in economic costs. |
format | Online Article Text |
id | pubmed-10441794 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-104417942023-08-22 Evidence- and data-driven classification of low back pain via artificial intelligence: Protocol of the PREDICT-LBP study Belavy, Daniel L. Tagliaferri, Scott D. Tegenthoff, Martin Enax-Krumova, Elena Schlaffke, Lara Bühring, Björn Schulte, Tobias L. Schmidt, Sein Wilke, Hans-Joachim Angelova, Maia Trudel, Guy Ehrenbrusthoff, Katja Fitzgibbon, Bernadette Van Oosterwijck, Jessica Miller, Clint T. Owen, Patrick J. Bowe, Steven Döding, Rebekka Kaczorowski, Svenja PLoS One Study Protocol In patients presenting with low back pain (LBP), once specific causes are excluded (fracture, infection, inflammatory arthritis, cancer, cauda equina and radiculopathy) many clinicians pose a diagnosis of non-specific LBP. Accordingly, current management of non-specific LBP is generic. There is a need for a classification of non-specific LBP that is both data- and evidence-based assessing multi-dimensional pain-related factors in a large sample size. The “PRedictive Evidence Driven Intelligent Classification Tool for Low Back Pain” (PREDICT-LBP) project is a prospective cross-sectional study which will compare 300 women and men with non-specific LBP (aged 18–55 years) with 100 matched referents without a history of LBP. Participants will be recruited from the general public and local medical facilities. Data will be collected on spinal tissue (intervertebral disc composition and morphology, vertebral fat fraction and paraspinal muscle size and composition via magnetic resonance imaging [MRI]), central nervous system adaptation (pain thresholds, temporal summation of pain, brain resting state functional connectivity, structural connectivity and regional volumes via MRI), psychosocial factors (e.g. depression, anxiety) and other musculoskeletal pain symptoms. Dimensionality reduction, cluster validation and fuzzy c-means clustering methods, classification models, and relevant sensitivity analyses, will classify non-specific LBP patients into sub-groups. This project represents a first personalised diagnostic approach to non-specific LBP, with potential for widespread uptake in clinical practice. This project will provide evidence to support clinical trials assessing specific treatments approaches for potential subgroups of patients with non-specific LBP. The classification tool may lead to better patient outcomes and reduction in economic costs. Public Library of Science 2023-08-21 /pmc/articles/PMC10441794/ /pubmed/37603539 http://dx.doi.org/10.1371/journal.pone.0282346 Text en © 2023 Belavy et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Study Protocol Belavy, Daniel L. Tagliaferri, Scott D. Tegenthoff, Martin Enax-Krumova, Elena Schlaffke, Lara Bühring, Björn Schulte, Tobias L. Schmidt, Sein Wilke, Hans-Joachim Angelova, Maia Trudel, Guy Ehrenbrusthoff, Katja Fitzgibbon, Bernadette Van Oosterwijck, Jessica Miller, Clint T. Owen, Patrick J. Bowe, Steven Döding, Rebekka Kaczorowski, Svenja Evidence- and data-driven classification of low back pain via artificial intelligence: Protocol of the PREDICT-LBP study |
title | Evidence- and data-driven classification of low back pain via artificial intelligence: Protocol of the PREDICT-LBP study |
title_full | Evidence- and data-driven classification of low back pain via artificial intelligence: Protocol of the PREDICT-LBP study |
title_fullStr | Evidence- and data-driven classification of low back pain via artificial intelligence: Protocol of the PREDICT-LBP study |
title_full_unstemmed | Evidence- and data-driven classification of low back pain via artificial intelligence: Protocol of the PREDICT-LBP study |
title_short | Evidence- and data-driven classification of low back pain via artificial intelligence: Protocol of the PREDICT-LBP study |
title_sort | evidence- and data-driven classification of low back pain via artificial intelligence: protocol of the predict-lbp study |
topic | Study Protocol |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441794/ https://www.ncbi.nlm.nih.gov/pubmed/37603539 http://dx.doi.org/10.1371/journal.pone.0282346 |
work_keys_str_mv | AT belavydaniell evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy AT tagliaferriscottd evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy AT tegenthoffmartin evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy AT enaxkrumovaelena evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy AT schlaffkelara evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy AT buhringbjorn evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy AT schultetobiasl evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy AT schmidtsein evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy AT wilkehansjoachim evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy AT angelovamaia evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy AT trudelguy evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy AT ehrenbrusthoffkatja evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy AT fitzgibbonbernadette evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy AT vanoosterwijckjessica evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy AT millerclintt evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy AT owenpatrickj evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy AT bowesteven evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy AT dodingrebekka evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy AT kaczorowskisvenja evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy |