Cargando…

Evidence- and data-driven classification of low back pain via artificial intelligence: Protocol of the PREDICT-LBP study

In patients presenting with low back pain (LBP), once specific causes are excluded (fracture, infection, inflammatory arthritis, cancer, cauda equina and radiculopathy) many clinicians pose a diagnosis of non-specific LBP. Accordingly, current management of non-specific LBP is generic. There is a ne...

Descripción completa

Detalles Bibliográficos
Autores principales: Belavy, Daniel L., Tagliaferri, Scott D., Tegenthoff, Martin, Enax-Krumova, Elena, Schlaffke, Lara, Bühring, Björn, Schulte, Tobias L., Schmidt, Sein, Wilke, Hans-Joachim, Angelova, Maia, Trudel, Guy, Ehrenbrusthoff, Katja, Fitzgibbon, Bernadette, Van Oosterwijck, Jessica, Miller, Clint T., Owen, Patrick J., Bowe, Steven, Döding, Rebekka, Kaczorowski, Svenja
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441794/
https://www.ncbi.nlm.nih.gov/pubmed/37603539
http://dx.doi.org/10.1371/journal.pone.0282346
_version_ 1785093451481612288
author Belavy, Daniel L.
Tagliaferri, Scott D.
Tegenthoff, Martin
Enax-Krumova, Elena
Schlaffke, Lara
Bühring, Björn
Schulte, Tobias L.
Schmidt, Sein
Wilke, Hans-Joachim
Angelova, Maia
Trudel, Guy
Ehrenbrusthoff, Katja
Fitzgibbon, Bernadette
Van Oosterwijck, Jessica
Miller, Clint T.
Owen, Patrick J.
Bowe, Steven
Döding, Rebekka
Kaczorowski, Svenja
author_facet Belavy, Daniel L.
Tagliaferri, Scott D.
Tegenthoff, Martin
Enax-Krumova, Elena
Schlaffke, Lara
Bühring, Björn
Schulte, Tobias L.
Schmidt, Sein
Wilke, Hans-Joachim
Angelova, Maia
Trudel, Guy
Ehrenbrusthoff, Katja
Fitzgibbon, Bernadette
Van Oosterwijck, Jessica
Miller, Clint T.
Owen, Patrick J.
Bowe, Steven
Döding, Rebekka
Kaczorowski, Svenja
author_sort Belavy, Daniel L.
collection PubMed
description In patients presenting with low back pain (LBP), once specific causes are excluded (fracture, infection, inflammatory arthritis, cancer, cauda equina and radiculopathy) many clinicians pose a diagnosis of non-specific LBP. Accordingly, current management of non-specific LBP is generic. There is a need for a classification of non-specific LBP that is both data- and evidence-based assessing multi-dimensional pain-related factors in a large sample size. The “PRedictive Evidence Driven Intelligent Classification Tool for Low Back Pain” (PREDICT-LBP) project is a prospective cross-sectional study which will compare 300 women and men with non-specific LBP (aged 18–55 years) with 100 matched referents without a history of LBP. Participants will be recruited from the general public and local medical facilities. Data will be collected on spinal tissue (intervertebral disc composition and morphology, vertebral fat fraction and paraspinal muscle size and composition via magnetic resonance imaging [MRI]), central nervous system adaptation (pain thresholds, temporal summation of pain, brain resting state functional connectivity, structural connectivity and regional volumes via MRI), psychosocial factors (e.g. depression, anxiety) and other musculoskeletal pain symptoms. Dimensionality reduction, cluster validation and fuzzy c-means clustering methods, classification models, and relevant sensitivity analyses, will classify non-specific LBP patients into sub-groups. This project represents a first personalised diagnostic approach to non-specific LBP, with potential for widespread uptake in clinical practice. This project will provide evidence to support clinical trials assessing specific treatments approaches for potential subgroups of patients with non-specific LBP. The classification tool may lead to better patient outcomes and reduction in economic costs.
format Online
Article
Text
id pubmed-10441794
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-104417942023-08-22 Evidence- and data-driven classification of low back pain via artificial intelligence: Protocol of the PREDICT-LBP study Belavy, Daniel L. Tagliaferri, Scott D. Tegenthoff, Martin Enax-Krumova, Elena Schlaffke, Lara Bühring, Björn Schulte, Tobias L. Schmidt, Sein Wilke, Hans-Joachim Angelova, Maia Trudel, Guy Ehrenbrusthoff, Katja Fitzgibbon, Bernadette Van Oosterwijck, Jessica Miller, Clint T. Owen, Patrick J. Bowe, Steven Döding, Rebekka Kaczorowski, Svenja PLoS One Study Protocol In patients presenting with low back pain (LBP), once specific causes are excluded (fracture, infection, inflammatory arthritis, cancer, cauda equina and radiculopathy) many clinicians pose a diagnosis of non-specific LBP. Accordingly, current management of non-specific LBP is generic. There is a need for a classification of non-specific LBP that is both data- and evidence-based assessing multi-dimensional pain-related factors in a large sample size. The “PRedictive Evidence Driven Intelligent Classification Tool for Low Back Pain” (PREDICT-LBP) project is a prospective cross-sectional study which will compare 300 women and men with non-specific LBP (aged 18–55 years) with 100 matched referents without a history of LBP. Participants will be recruited from the general public and local medical facilities. Data will be collected on spinal tissue (intervertebral disc composition and morphology, vertebral fat fraction and paraspinal muscle size and composition via magnetic resonance imaging [MRI]), central nervous system adaptation (pain thresholds, temporal summation of pain, brain resting state functional connectivity, structural connectivity and regional volumes via MRI), psychosocial factors (e.g. depression, anxiety) and other musculoskeletal pain symptoms. Dimensionality reduction, cluster validation and fuzzy c-means clustering methods, classification models, and relevant sensitivity analyses, will classify non-specific LBP patients into sub-groups. This project represents a first personalised diagnostic approach to non-specific LBP, with potential for widespread uptake in clinical practice. This project will provide evidence to support clinical trials assessing specific treatments approaches for potential subgroups of patients with non-specific LBP. The classification tool may lead to better patient outcomes and reduction in economic costs. Public Library of Science 2023-08-21 /pmc/articles/PMC10441794/ /pubmed/37603539 http://dx.doi.org/10.1371/journal.pone.0282346 Text en © 2023 Belavy et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Study Protocol
Belavy, Daniel L.
Tagliaferri, Scott D.
Tegenthoff, Martin
Enax-Krumova, Elena
Schlaffke, Lara
Bühring, Björn
Schulte, Tobias L.
Schmidt, Sein
Wilke, Hans-Joachim
Angelova, Maia
Trudel, Guy
Ehrenbrusthoff, Katja
Fitzgibbon, Bernadette
Van Oosterwijck, Jessica
Miller, Clint T.
Owen, Patrick J.
Bowe, Steven
Döding, Rebekka
Kaczorowski, Svenja
Evidence- and data-driven classification of low back pain via artificial intelligence: Protocol of the PREDICT-LBP study
title Evidence- and data-driven classification of low back pain via artificial intelligence: Protocol of the PREDICT-LBP study
title_full Evidence- and data-driven classification of low back pain via artificial intelligence: Protocol of the PREDICT-LBP study
title_fullStr Evidence- and data-driven classification of low back pain via artificial intelligence: Protocol of the PREDICT-LBP study
title_full_unstemmed Evidence- and data-driven classification of low back pain via artificial intelligence: Protocol of the PREDICT-LBP study
title_short Evidence- and data-driven classification of low back pain via artificial intelligence: Protocol of the PREDICT-LBP study
title_sort evidence- and data-driven classification of low back pain via artificial intelligence: protocol of the predict-lbp study
topic Study Protocol
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441794/
https://www.ncbi.nlm.nih.gov/pubmed/37603539
http://dx.doi.org/10.1371/journal.pone.0282346
work_keys_str_mv AT belavydaniell evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy
AT tagliaferriscottd evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy
AT tegenthoffmartin evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy
AT enaxkrumovaelena evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy
AT schlaffkelara evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy
AT buhringbjorn evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy
AT schultetobiasl evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy
AT schmidtsein evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy
AT wilkehansjoachim evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy
AT angelovamaia evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy
AT trudelguy evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy
AT ehrenbrusthoffkatja evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy
AT fitzgibbonbernadette evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy
AT vanoosterwijckjessica evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy
AT millerclintt evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy
AT owenpatrickj evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy
AT bowesteven evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy
AT dodingrebekka evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy
AT kaczorowskisvenja evidenceanddatadrivenclassificationoflowbackpainviaartificialintelligenceprotocolofthepredictlbpstudy