Cargando…
Improvement of leaf K(+) retention is a shared mechanism behind CeO(2) and Mn(3)O(4) nanoparticles improved rapeseed salt tolerance
Salinity is a global issue limiting efficient agricultural production. Nanobiotechnology has been emerged as an effective approach to improve plant salt tolerance. However, little known is about the shared mechanisms between different nanomaterials-enabled plant salt tolerance. In this study, we fou...
Autores principales: | Li, Yanhui, Hu, Jin, Qi, Jie, Zhao, Fameng, Liu, Jiahao, Chen, Linlin, Chen, Lu, Gu, Jiangjiang, Wu, Honghong, Li, Zhaohu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441935/ https://www.ncbi.nlm.nih.gov/pubmed/37676336 http://dx.doi.org/10.1007/s44154-022-00065-y |
Ejemplares similares
-
CeO(2) Nanoparticles Seed Priming Increases Salicylic Acid Level and ROS Scavenging Ability to Improve Rapeseed Salt Tolerance
por: Khan, Mohammad Nauman, et al.
Publicado: (2022) -
CeO(2) Nanoparticles Seed Priming Increases Salicylic Acid Level and ROS Scavenging Ability to Improve Rapeseed Salt Tolerance (Global Challenges 7/2022)
por: Khan, Mohammad Nauman, et al.
Publicado: (2022) -
Use of Mn(3)O(4)
nanozyme to improve cotton salt tolerance
por: Liu, Jiahao, et al.
Publicado: (2023) -
Roles of Oxygen Vacancies of CeO(2) and Mn-Doped CeO(2) with the Same Morphology in Benzene Catalytic Oxidation
por: Yang, Min, et al.
Publicado: (2021) -
Ce=O Terminated CeO(2)
por: Grinter, David C., et al.
Publicado: (2021)