Cargando…
Bacillus sp. YC7 from intestines of Lasioderma serricorne degrades nicotine due to nicotine dehydrogenase
A large number of nicotine-containing wastes produced during the tobacco manufacturing process are seriously harmful to the environment and human health. The degradation and transformation of nicotine-containing environmental contaminants to harmless substances has become an urgent requirement. Lasi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441963/ https://www.ncbi.nlm.nih.gov/pubmed/37603100 http://dx.doi.org/10.1186/s13568-023-01593-0 |
Sumario: | A large number of nicotine-containing wastes produced during the tobacco manufacturing process are seriously harmful to the environment and human health. The degradation and transformation of nicotine-containing environmental contaminants to harmless substances has become an urgent requirement. Lasioderma serricorne can grow and reproduce in nicotine-rich sources, and their intestinal microbiota show promising potential to degrade and utilize nicotine. The purpose of this study is to screen and identify nicotine-degrading bacteria from the intestines of L. serricorne and explore their degradation characteristics. A dominant strain, YC7, with significant nicotine degradation capabilities was isolated from the intestines of L. serricorne. The strain was identified as Bacillus using a polyphasic approach. The test results showed it can produce multiple enzymes that include β-glucosidase, cellulase, proteases, and amylases. The nicotine-degrading bacteria were functionally annotated using databases. Nicotine dehydrogenase (NDH) was found by combining an activity tracking test and protein mass spectrometry analysis. The YC-7 NDH in the pathway was molecularly docked and functionally verified via the gene knockdown method. The binding ability of nicotine to nicotine-degrading enzymes was investigated using molecular docking. A high-efficiency nicotine-degrading bacteria, YC-7, was isolated and screened from tobacco, and the gene functions related to degradation were verified. This investigation provides a new hypothesis for screening nicotine-degrading bacteria and increases our knowledge of potential nicotine-degrading microbial sources. |
---|