Cargando…
Algorithmic fairness and bias mitigation for clinical machine learning with deep reinforcement learning
As models based on machine learning continue to be developed for healthcare applications, greater effort is needed to ensure that these technologies do not reflect or exacerbate any unwanted or discriminatory biases that may be present in the data. Here we introduce a reinforcement learning framewor...
Autores principales: | Yang, Jenny, Soltan, Andrew A. S., Eyre, David W., Clifton, David A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442224/ https://www.ncbi.nlm.nih.gov/pubmed/37615031 http://dx.doi.org/10.1038/s42256-023-00697-3 |
Ejemplares similares
-
An adversarial training framework for mitigating algorithmic biases in clinical machine learning
por: Yang, Jenny, et al.
Publicado: (2023) -
Beyond bias and discrimination: redefining the AI ethics principle of fairness in healthcare machine-learning algorithms
por: Giovanola, Benedetta, et al.
Publicado: (2022) -
Machine learning generalizability across healthcare settings: insights from multi-site COVID-19 screening
por: Yang, Jenny, et al.
Publicado: (2022) -
Mitigating bias in machine learning for medicine
por: Vokinger, Kerstin N., et al.
Publicado: (2021) -
Algorithmic Fairness of Machine Learning Models for Alzheimer Disease Progression
por: Yuan, Chenxi, et al.
Publicado: (2023)