Cargando…
Bias in the number of steps in the Euclidean algorithm and a conjecture of Ito on Dedekind sums
We investigate the number of steps taken by three variants of the Euclidean algorithm on average over Farey fractions. We show asymptotic formulae for these averages restricted to the interval (0, 1/2), establishing that they behave differently on (0, 1/2) than they do on (1/2, 1). These results are...
Autores principales: | Minelli, Paolo, Sourmelidis, Athanasios, Technau, Marc |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442276/ https://www.ncbi.nlm.nih.gov/pubmed/37614643 http://dx.doi.org/10.1007/s00208-022-02452-2 |
Ejemplares similares
-
On the General Dedekind Sums and Two-Term Exponential Sums
por: Zhang, Junli, et al.
Publicado: (2014) -
A Hybrid Mean Value Involving Dedekind Sums and the General Exponential Sums
por: Li, Jianghua, et al.
Publicado: (2014) -
Conjectures of Sun About Sums of Polygonal Numbers
por: Bringmann, Kathrin, et al.
Publicado: (2022) -
On sums of coefficients of polynomials related to the Borwein conjectures
por: Goswami, Ankush, et al.
Publicado: (2021) -
Functions and generality of logic: reflections on Dedekind's and Frege's logicisms
por: Benis-Sinaceur, Hourya, et al.
Publicado: (2015)