Cargando…
Electrical analogue of one-dimensional and quasi-one-dimensional Aubry–André–Harper lattices
This work explores the potential for achieving correlated disorder in electrical circuits by utilizing reactive elements. By establishing a direct correspondence between the tight-binding Hamiltonian and the admittance matrix of the circuit, a novel approach is presented. The localization phenomena...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442325/ https://www.ncbi.nlm.nih.gov/pubmed/37604882 http://dx.doi.org/10.1038/s41598-023-40690-9 |
Sumario: | This work explores the potential for achieving correlated disorder in electrical circuits by utilizing reactive elements. By establishing a direct correspondence between the tight-binding Hamiltonian and the admittance matrix of the circuit, a novel approach is presented. The localization phenomena within the circuit are investigated through the analysis of the two-port impedance. To introduce correlated disorder, the Aubry–André–Harper (AAH) model is employed. Both one-dimensional and quasi-one-dimensional AAH structures are examined and effectively mapped to their tight-binding counterparts. Notably, transitions from a high-conducting phase to a low-conducting phase are observed in these circuits, highlighting the impact of correlated disorder. |
---|