Cargando…
Evaluating clinical heterogeneity and predicting mortality in severely burned patients through unsupervised clustering and latent class analysis
Burn injuries often result in a high level of clinical heterogeneity and poor prognosis in patients with severe burns. Clustering algorithms, which are unsupervised methods that can identify groups with similar trajectories in patients with heterogeneous diseases, can provide insights into the mecha...
Autores principales: | Kim, Sungmin, Yoon, Jaechul, Kym, Dohern, Hur, Jun, Kim, Myongjin, Park, Jongsoo, Cho, Yong Suk, Chun, Wook, Yoon, Dogeon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442401/ https://www.ncbi.nlm.nih.gov/pubmed/37604951 http://dx.doi.org/10.1038/s41598-023-40927-7 |
Ejemplares similares
-
Tracking longitudinal biomarkers in burn patients with sepsis and acute kidney injury: an unsupervised clustering approach
por: Kim, Myongjin, et al.
Publicado: (2023) -
Longitudinal profile of routine biomarkers for mortality prediction using unsupervised clustering algorithm in severely burned patients: a retrospective cohort study with prospectively collected data
por: Yoon, Jaechul, et al.
Publicado: (2023) -
Validation of Sepsis-3 using survival analysis and clinical evaluation of quick SOFA, SIRS, and burn-specific SIRS for sepsis in burn patients with suspected infection
por: Yoon, Jaechul, et al.
Publicado: (2023) -
Subgroup analysis of continuous renal replacement therapy in severely burned patients
por: Yoon, Jaechul, et al.
Publicado: (2017) -
Does inhalation injury predict mortality in burns patients or require redefinition?
por: Kim, Youngmin, et al.
Publicado: (2017)