Cargando…
Feature-aware unsupervised lesion segmentation for brain tumor images using fast data density functional transform
We demonstrate that isomorphically mapping gray-level medical image matrices onto energy spaces underlying the framework of fast data density functional transform (fDDFT) can achieve the unsupervised recognition of lesion morphology. By introducing the architecture of geometric deep learning and met...
Autores principales: | Huang, Shin-Jhe, Chen, Chien-Chang, Kao, Yamin, Lu, Henry Horng-Shing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442428/ https://www.ncbi.nlm.nih.gov/pubmed/37604860 http://dx.doi.org/10.1038/s41598-023-40848-5 |
Ejemplares similares
-
Computational Complexity Reduction of Neural Networks of Brain Tumor Image Segmentation by Introducing Fermi–Dirac Correction Functions
por: Tai, Yen-Ling, et al.
Publicado: (2021) -
Unsupervised Learning and Pattern Recognition of Biological Data Structures with Density Functional Theory and Machine Learning
por: Chen, Chien-Chang, et al.
Publicado: (2018) -
Unsupervised brain imaging 3D anomaly detection and segmentation with transformers
por: Pinaya, Walter H.L., et al.
Publicado: (2022) -
Lesion segmentation in lung CT scans using unsupervised adversarial learning
por: Sherwani, Moiz Khan, et al.
Publicado: (2022) -
Tracking bacteria at high density with FAST, the Feature-Assisted Segmenter/Tracker
por: Meacock, Oliver J., et al.
Publicado: (2023)