Cargando…
Adversarial robustness in deep neural networks based on variable attributes of the stochastic ensemble model
Deep neural networks (DNNs) have been shown to be susceptible to critical vulnerabilities when attacked by adversarial samples. This has prompted the development of attack and defense strategies similar to those used in cyberspace security. The dependence of such strategies on attack and defense mec...
Autores principales: | Qin, Ruoxi, Wang, Linyuan, Du, Xuehui, Xie, Pengfei, Chen, Xingyuan, Yan, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442534/ https://www.ncbi.nlm.nih.gov/pubmed/37614968 http://dx.doi.org/10.3389/fnbot.2023.1205370 |
Ejemplares similares
-
Robustness of Sparsely Distributed Representations to Adversarial Attacks in Deep Neural Networks
por: Sardar, Nida, et al.
Publicado: (2023) -
Improving the adversarial transferability with relational graphs ensemble adversarial attack
por: Pi, Jiatian, et al.
Publicado: (2023) -
Deep Convolutional Neural Networks With Ensemble Learning and Generative Adversarial Networks for Alzheimer’s Disease Image Data Classification
por: Logan, Robert, et al.
Publicado: (2021) -
Adversarial attacks and adversarial robustness in computational pathology
por: Ghaffari Laleh, Narmin, et al.
Publicado: (2022) -
Robust adversarial uncertainty quantification for deep learning fine-tuning
por: Ahmed, Usman, et al.
Publicado: (2023)