Cargando…
Taking early preventive interventions to manage the challenging issue of acquired resistance to third-generation EGFR inhibitors
Although the clinical efficacies of third-generation epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) such as osimertinib in the treatment of non-small cell lung cancer (NSCLC) with EGFR-activating mutations are promising, drug-acquired resistance inevitably occurs whether t...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442612/ https://www.ncbi.nlm.nih.gov/pubmed/37609474 http://dx.doi.org/10.1016/j.pccm.2022.10.001 |
Sumario: | Although the clinical efficacies of third-generation epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) such as osimertinib in the treatment of non-small cell lung cancer (NSCLC) with EGFR-activating mutations are promising, drug-acquired resistance inevitably occurs whether they are used as first-line or second-line treatment. Therefore, managing the acquired resistance to third-generation EGFR-TKIs is crucial in the clinic for improving patient survival. Great efforts have been made to develop potentially effective strategies or regimens for the treatment of EGFR-mutant NSCLC patients after relapse following these TKIs therapies with the hope that patients will continue to benefit from treatment through overcoming acquired resistance. Although this approach, which aims to overcome drug-acquired resistance, is necessary and important, it is a passive practice. Taking preventive action early before disease progression to manage the unavoidable development of acquired resistance offers an equally important and efficient approach. We strongly believe that early preventive interventions using effective and tolerable combination regimens that interfere with the process of developing acquired resistance may substantially improve the outcomes of EGFR-mutant NSCLC treatment with third-generation EGFR-TKIs. Thus, this review focuses on discussing the scientific rationale and mechanism-driven strategies for delaying and even preventing the emergence of acquired resistance to third-generation EGFR-TKIs, particularly osimertinib. |
---|