Cargando…

An Algorithmic Approach to Compute the Effect of Non-Radiative Relaxation Processes in Photoacoustic Spectroscopy

Successful transfer of photoacoustic gas sensors from laboratory to real-life applications requires knowledge about potential cross-sensitivities towards environmental and gas matrix changes. Multi-dimensional calibration in case of cross-sensitivities can become very complex or even unfeasible. To...

Descripción completa

Detalles Bibliográficos
Autores principales: Müller, Max, Rück, Thomas, Jobst, Simon, Pangerl, Jonas, Weigl, Stefan, Bierl, Rudolf, Matysik, Frank-Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442890/
https://www.ncbi.nlm.nih.gov/pubmed/37614667
http://dx.doi.org/10.1016/j.pacs.2022.100371
_version_ 1785093699326181376
author Müller, Max
Rück, Thomas
Jobst, Simon
Pangerl, Jonas
Weigl, Stefan
Bierl, Rudolf
Matysik, Frank-Michael
author_facet Müller, Max
Rück, Thomas
Jobst, Simon
Pangerl, Jonas
Weigl, Stefan
Bierl, Rudolf
Matysik, Frank-Michael
author_sort Müller, Max
collection PubMed
description Successful transfer of photoacoustic gas sensors from laboratory to real-life applications requires knowledge about potential cross-sensitivities towards environmental and gas matrix changes. Multi-dimensional calibration in case of cross-sensitivities can become very complex or even unfeasible. To address this challenge, we present a novel algorithm to compute the collision based non-radiative efficiency and phase lag of energy relaxation on a molecular level (CoNRad) for photoacoustic signal calculation. This algorithmic approach allows to calculate the entire relaxation cascade of arbitrarily complex systems, yielding a theoretical photoacoustic signal. In this work the influence of varying bulk compositions, i.e. nitrogen (N(2)), oxygen (O(2)) and water (H(2)O) on the photoacoustic signal during methane (CH(4)) detection is demonstrated. The applicability of the algorithm to other photoacoustic setups is shown exemplary by applying it to the relaxational system investigated in [1]. Hayden et al. examined the effect of water on photoacoustic carbon monoxide (CO) detection.
format Online
Article
Text
id pubmed-10442890
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-104428902023-08-23 An Algorithmic Approach to Compute the Effect of Non-Radiative Relaxation Processes in Photoacoustic Spectroscopy Müller, Max Rück, Thomas Jobst, Simon Pangerl, Jonas Weigl, Stefan Bierl, Rudolf Matysik, Frank-Michael Photoacoustics Research Article Successful transfer of photoacoustic gas sensors from laboratory to real-life applications requires knowledge about potential cross-sensitivities towards environmental and gas matrix changes. Multi-dimensional calibration in case of cross-sensitivities can become very complex or even unfeasible. To address this challenge, we present a novel algorithm to compute the collision based non-radiative efficiency and phase lag of energy relaxation on a molecular level (CoNRad) for photoacoustic signal calculation. This algorithmic approach allows to calculate the entire relaxation cascade of arbitrarily complex systems, yielding a theoretical photoacoustic signal. In this work the influence of varying bulk compositions, i.e. nitrogen (N(2)), oxygen (O(2)) and water (H(2)O) on the photoacoustic signal during methane (CH(4)) detection is demonstrated. The applicability of the algorithm to other photoacoustic setups is shown exemplary by applying it to the relaxational system investigated in [1]. Hayden et al. examined the effect of water on photoacoustic carbon monoxide (CO) detection. Elsevier 2022-05-13 /pmc/articles/PMC10442890/ /pubmed/37614667 http://dx.doi.org/10.1016/j.pacs.2022.100371 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Article
Müller, Max
Rück, Thomas
Jobst, Simon
Pangerl, Jonas
Weigl, Stefan
Bierl, Rudolf
Matysik, Frank-Michael
An Algorithmic Approach to Compute the Effect of Non-Radiative Relaxation Processes in Photoacoustic Spectroscopy
title An Algorithmic Approach to Compute the Effect of Non-Radiative Relaxation Processes in Photoacoustic Spectroscopy
title_full An Algorithmic Approach to Compute the Effect of Non-Radiative Relaxation Processes in Photoacoustic Spectroscopy
title_fullStr An Algorithmic Approach to Compute the Effect of Non-Radiative Relaxation Processes in Photoacoustic Spectroscopy
title_full_unstemmed An Algorithmic Approach to Compute the Effect of Non-Radiative Relaxation Processes in Photoacoustic Spectroscopy
title_short An Algorithmic Approach to Compute the Effect of Non-Radiative Relaxation Processes in Photoacoustic Spectroscopy
title_sort algorithmic approach to compute the effect of non-radiative relaxation processes in photoacoustic spectroscopy
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442890/
https://www.ncbi.nlm.nih.gov/pubmed/37614667
http://dx.doi.org/10.1016/j.pacs.2022.100371
work_keys_str_mv AT mullermax analgorithmicapproachtocomputetheeffectofnonradiativerelaxationprocessesinphotoacousticspectroscopy
AT ruckthomas analgorithmicapproachtocomputetheeffectofnonradiativerelaxationprocessesinphotoacousticspectroscopy
AT jobstsimon analgorithmicapproachtocomputetheeffectofnonradiativerelaxationprocessesinphotoacousticspectroscopy
AT pangerljonas analgorithmicapproachtocomputetheeffectofnonradiativerelaxationprocessesinphotoacousticspectroscopy
AT weiglstefan analgorithmicapproachtocomputetheeffectofnonradiativerelaxationprocessesinphotoacousticspectroscopy
AT bierlrudolf analgorithmicapproachtocomputetheeffectofnonradiativerelaxationprocessesinphotoacousticspectroscopy
AT matysikfrankmichael analgorithmicapproachtocomputetheeffectofnonradiativerelaxationprocessesinphotoacousticspectroscopy
AT mullermax algorithmicapproachtocomputetheeffectofnonradiativerelaxationprocessesinphotoacousticspectroscopy
AT ruckthomas algorithmicapproachtocomputetheeffectofnonradiativerelaxationprocessesinphotoacousticspectroscopy
AT jobstsimon algorithmicapproachtocomputetheeffectofnonradiativerelaxationprocessesinphotoacousticspectroscopy
AT pangerljonas algorithmicapproachtocomputetheeffectofnonradiativerelaxationprocessesinphotoacousticspectroscopy
AT weiglstefan algorithmicapproachtocomputetheeffectofnonradiativerelaxationprocessesinphotoacousticspectroscopy
AT bierlrudolf algorithmicapproachtocomputetheeffectofnonradiativerelaxationprocessesinphotoacousticspectroscopy
AT matysikfrankmichael algorithmicapproachtocomputetheeffectofnonradiativerelaxationprocessesinphotoacousticspectroscopy