Cargando…

c-JUN is a barrier in hESC to cardiomyocyte transition

Loss of c-JUN leads to early mouse embryonic death, possibly because of a failure to develop a normal cardiac system. How c-JUN regulates human cardiomyocyte cell fate remains unknown. Here, we used the in vitro differentiation of human pluripotent stem cells into cardiomyocytes to study the role of...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhong, Hui, Zhang, Ran, Li, Guihuan, Huang, Ping, Zhang, Yudan, Zhu, Jieying, Kuang, Junqi, Hutchins, Andrew P, Qin, Dajiang, Zhu, Ping, Pei, Duanqing, Li, Dongwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Life Science Alliance LLC 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442936/
https://www.ncbi.nlm.nih.gov/pubmed/37604584
http://dx.doi.org/10.26508/lsa.202302121
Descripción
Sumario:Loss of c-JUN leads to early mouse embryonic death, possibly because of a failure to develop a normal cardiac system. How c-JUN regulates human cardiomyocyte cell fate remains unknown. Here, we used the in vitro differentiation of human pluripotent stem cells into cardiomyocytes to study the role of c-JUN. Surprisingly, the knockout of c-JUN improved cardiomyocyte generation, as determined by the number of TNNT2+ cells. ATAC-seq data showed that the c-JUN defect led to increased chromatin accessibility on critical regulatory elements related to cardiomyocyte development. ChIP-seq data showed that the knockout c-JUN increased RBBP5 and SETD1B expression, leading to improved H3K4me3 deposition on key genes that regulate cardiogenesis. The c-JUN KO phenotype could be copied using the histone demethylase inhibitor CPI-455, which also up-regulated H3K4me3 levels and increased cardiomyocyte generation. Single-cell RNA-seq data defined three cell branches, and knockout c-JUN activated more regulons that are related to cardiogenesis. In summary, our data demonstrated that c-JUN could regulate cardiomyocyte cell fate by modulating H3K4me3 modification and chromatin accessibility and shed light on how c-JUN regulates heart development in humans.