Cargando…
ScEnSor Kit for Saccharomyces cerevisiae Engineering and Biosensor-Driven Investigation of the Intracellular Environment
[Image: see text] In this study, the three-step build-transform-assess toolbox for real-time monitoring of the yeast intracellular environment has been expanded and upgraded to the two-module ScEnSor (S. cerevisiae Engineering + Biosensor) Kit. The Biosensor Module includes eight fluorescent reporte...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10443032/ https://www.ncbi.nlm.nih.gov/pubmed/37552581 http://dx.doi.org/10.1021/acssynbio.3c00124 |
Sumario: | [Image: see text] In this study, the three-step build-transform-assess toolbox for real-time monitoring of the yeast intracellular environment has been expanded and upgraded to the two-module ScEnSor (S. cerevisiae Engineering + Biosensor) Kit. The Biosensor Module includes eight fluorescent reporters for the intracellular environment; three of them (unfolded protein response, pyruvate metabolism, and ethanol consumption) were newly implemented to complement the original five. The Genome-Integration Module comprises a set of backbone plasmids for the assembly of 1–6 transcriptional units (each consisting of promoter, coding sequence, and terminator) for efficient marker-free single-locus genome integration (in HO and/or X2 loci). Altogether, the ScEnSor Kit enables rapid and easy construction of strains with new transcriptional units as well as high-throughput investigation of the yeast intracellular environment. |
---|