Cargando…
SbSeI and SbSeBr micro-columnar solar cells by a novel high pressure-based synthesis process
Van der Waals chalcogenides and chalcohalides have the potential to become the next thin film PV breakthrough, owing to the earth-abundancy and non-toxicity of their components, and their stability, high absorption coefficient and quasi-1D structure, which leads to enhanced electrical anisotropic pr...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10443182/ https://www.ncbi.nlm.nih.gov/pubmed/38013931 http://dx.doi.org/10.1039/d3ta03179a |
_version_ | 1785093768838381568 |
---|---|
author | Caño, Ivan Navarro-Güell, Alejandro Maggi, Edoardo Barrio, Maria Tamarit, Josep-Lluís Svatek, Simon Antolín, Elisa Yan, Shunya Barrena, Esther Galiana, Beatriz Placidi, Marcel Puigdollers, Joaquim Saucedo, Edgardo |
author_facet | Caño, Ivan Navarro-Güell, Alejandro Maggi, Edoardo Barrio, Maria Tamarit, Josep-Lluís Svatek, Simon Antolín, Elisa Yan, Shunya Barrena, Esther Galiana, Beatriz Placidi, Marcel Puigdollers, Joaquim Saucedo, Edgardo |
author_sort | Caño, Ivan |
collection | PubMed |
description | Van der Waals chalcogenides and chalcohalides have the potential to become the next thin film PV breakthrough, owing to the earth-abundancy and non-toxicity of their components, and their stability, high absorption coefficient and quasi-1D structure, which leads to enhanced electrical anisotropic properties when the material is oriented in a specific crystalline direction. However, quasi-1D semiconductors beyond Sb(2)(S,Se)(3), such as SbSeX chalcohalides, have been scarcely investigated for energy generation applications, and rarely synthesised by physical vapor deposition methodologies, despite holding the promise of widening the bandgap range (opening the door to tandem or semi-transparent devices), and showing enticing new properties such as ferroelectric behaviour and defect-tolerant nature. In this work, SbSeI and SbSeBr micro-columnar solar cells have been obtained for the first time by an innovative methodology based on the selective halogenation of Sb(2)Se(3) thin films at pressure above 1 atm. It is shown that by increasing the annealing temperature and pressure, the height and density of the micro-columnar structures grows monotonically, resulting in SbSeI single-crystal columns up to 30 μm, and tuneable morphology. In addition, solar cell prototypes with substrate configuration have shown remarkable V(oc) values above 550 mV and 1.8 eV bandgap. |
format | Online Article Text |
id | pubmed-10443182 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-104431822023-08-23 SbSeI and SbSeBr micro-columnar solar cells by a novel high pressure-based synthesis process Caño, Ivan Navarro-Güell, Alejandro Maggi, Edoardo Barrio, Maria Tamarit, Josep-Lluís Svatek, Simon Antolín, Elisa Yan, Shunya Barrena, Esther Galiana, Beatriz Placidi, Marcel Puigdollers, Joaquim Saucedo, Edgardo J Mater Chem A Mater Chemistry Van der Waals chalcogenides and chalcohalides have the potential to become the next thin film PV breakthrough, owing to the earth-abundancy and non-toxicity of their components, and their stability, high absorption coefficient and quasi-1D structure, which leads to enhanced electrical anisotropic properties when the material is oriented in a specific crystalline direction. However, quasi-1D semiconductors beyond Sb(2)(S,Se)(3), such as SbSeX chalcohalides, have been scarcely investigated for energy generation applications, and rarely synthesised by physical vapor deposition methodologies, despite holding the promise of widening the bandgap range (opening the door to tandem or semi-transparent devices), and showing enticing new properties such as ferroelectric behaviour and defect-tolerant nature. In this work, SbSeI and SbSeBr micro-columnar solar cells have been obtained for the first time by an innovative methodology based on the selective halogenation of Sb(2)Se(3) thin films at pressure above 1 atm. It is shown that by increasing the annealing temperature and pressure, the height and density of the micro-columnar structures grows monotonically, resulting in SbSeI single-crystal columns up to 30 μm, and tuneable morphology. In addition, solar cell prototypes with substrate configuration have shown remarkable V(oc) values above 550 mV and 1.8 eV bandgap. The Royal Society of Chemistry 2023-07-20 /pmc/articles/PMC10443182/ /pubmed/38013931 http://dx.doi.org/10.1039/d3ta03179a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Caño, Ivan Navarro-Güell, Alejandro Maggi, Edoardo Barrio, Maria Tamarit, Josep-Lluís Svatek, Simon Antolín, Elisa Yan, Shunya Barrena, Esther Galiana, Beatriz Placidi, Marcel Puigdollers, Joaquim Saucedo, Edgardo SbSeI and SbSeBr micro-columnar solar cells by a novel high pressure-based synthesis process |
title | SbSeI and SbSeBr micro-columnar solar cells by a novel high pressure-based synthesis process |
title_full | SbSeI and SbSeBr micro-columnar solar cells by a novel high pressure-based synthesis process |
title_fullStr | SbSeI and SbSeBr micro-columnar solar cells by a novel high pressure-based synthesis process |
title_full_unstemmed | SbSeI and SbSeBr micro-columnar solar cells by a novel high pressure-based synthesis process |
title_short | SbSeI and SbSeBr micro-columnar solar cells by a novel high pressure-based synthesis process |
title_sort | sbsei and sbsebr micro-columnar solar cells by a novel high pressure-based synthesis process |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10443182/ https://www.ncbi.nlm.nih.gov/pubmed/38013931 http://dx.doi.org/10.1039/d3ta03179a |
work_keys_str_mv | AT canoivan sbseiandsbsebrmicrocolumnarsolarcellsbyanovelhighpressurebasedsynthesisprocess AT navarroguellalejandro sbseiandsbsebrmicrocolumnarsolarcellsbyanovelhighpressurebasedsynthesisprocess AT maggiedoardo sbseiandsbsebrmicrocolumnarsolarcellsbyanovelhighpressurebasedsynthesisprocess AT barriomaria sbseiandsbsebrmicrocolumnarsolarcellsbyanovelhighpressurebasedsynthesisprocess AT tamaritjoseplluis sbseiandsbsebrmicrocolumnarsolarcellsbyanovelhighpressurebasedsynthesisprocess AT svateksimon sbseiandsbsebrmicrocolumnarsolarcellsbyanovelhighpressurebasedsynthesisprocess AT antolinelisa sbseiandsbsebrmicrocolumnarsolarcellsbyanovelhighpressurebasedsynthesisprocess AT yanshunya sbseiandsbsebrmicrocolumnarsolarcellsbyanovelhighpressurebasedsynthesisprocess AT barrenaesther sbseiandsbsebrmicrocolumnarsolarcellsbyanovelhighpressurebasedsynthesisprocess AT galianabeatriz sbseiandsbsebrmicrocolumnarsolarcellsbyanovelhighpressurebasedsynthesisprocess AT placidimarcel sbseiandsbsebrmicrocolumnarsolarcellsbyanovelhighpressurebasedsynthesisprocess AT puigdollersjoaquim sbseiandsbsebrmicrocolumnarsolarcellsbyanovelhighpressurebasedsynthesisprocess AT saucedoedgardo sbseiandsbsebrmicrocolumnarsolarcellsbyanovelhighpressurebasedsynthesisprocess |