Cargando…

SbSeI and SbSeBr micro-columnar solar cells by a novel high pressure-based synthesis process

Van der Waals chalcogenides and chalcohalides have the potential to become the next thin film PV breakthrough, owing to the earth-abundancy and non-toxicity of their components, and their stability, high absorption coefficient and quasi-1D structure, which leads to enhanced electrical anisotropic pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Caño, Ivan, Navarro-Güell, Alejandro, Maggi, Edoardo, Barrio, Maria, Tamarit, Josep-Lluís, Svatek, Simon, Antolín, Elisa, Yan, Shunya, Barrena, Esther, Galiana, Beatriz, Placidi, Marcel, Puigdollers, Joaquim, Saucedo, Edgardo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10443182/
https://www.ncbi.nlm.nih.gov/pubmed/38013931
http://dx.doi.org/10.1039/d3ta03179a
_version_ 1785093768838381568
author Caño, Ivan
Navarro-Güell, Alejandro
Maggi, Edoardo
Barrio, Maria
Tamarit, Josep-Lluís
Svatek, Simon
Antolín, Elisa
Yan, Shunya
Barrena, Esther
Galiana, Beatriz
Placidi, Marcel
Puigdollers, Joaquim
Saucedo, Edgardo
author_facet Caño, Ivan
Navarro-Güell, Alejandro
Maggi, Edoardo
Barrio, Maria
Tamarit, Josep-Lluís
Svatek, Simon
Antolín, Elisa
Yan, Shunya
Barrena, Esther
Galiana, Beatriz
Placidi, Marcel
Puigdollers, Joaquim
Saucedo, Edgardo
author_sort Caño, Ivan
collection PubMed
description Van der Waals chalcogenides and chalcohalides have the potential to become the next thin film PV breakthrough, owing to the earth-abundancy and non-toxicity of their components, and their stability, high absorption coefficient and quasi-1D structure, which leads to enhanced electrical anisotropic properties when the material is oriented in a specific crystalline direction. However, quasi-1D semiconductors beyond Sb(2)(S,Se)(3), such as SbSeX chalcohalides, have been scarcely investigated for energy generation applications, and rarely synthesised by physical vapor deposition methodologies, despite holding the promise of widening the bandgap range (opening the door to tandem or semi-transparent devices), and showing enticing new properties such as ferroelectric behaviour and defect-tolerant nature. In this work, SbSeI and SbSeBr micro-columnar solar cells have been obtained for the first time by an innovative methodology based on the selective halogenation of Sb(2)Se(3) thin films at pressure above 1 atm. It is shown that by increasing the annealing temperature and pressure, the height and density of the micro-columnar structures grows monotonically, resulting in SbSeI single-crystal columns up to 30 μm, and tuneable morphology. In addition, solar cell prototypes with substrate configuration have shown remarkable V(oc) values above 550 mV and 1.8 eV bandgap.
format Online
Article
Text
id pubmed-10443182
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-104431822023-08-23 SbSeI and SbSeBr micro-columnar solar cells by a novel high pressure-based synthesis process Caño, Ivan Navarro-Güell, Alejandro Maggi, Edoardo Barrio, Maria Tamarit, Josep-Lluís Svatek, Simon Antolín, Elisa Yan, Shunya Barrena, Esther Galiana, Beatriz Placidi, Marcel Puigdollers, Joaquim Saucedo, Edgardo J Mater Chem A Mater Chemistry Van der Waals chalcogenides and chalcohalides have the potential to become the next thin film PV breakthrough, owing to the earth-abundancy and non-toxicity of their components, and their stability, high absorption coefficient and quasi-1D structure, which leads to enhanced electrical anisotropic properties when the material is oriented in a specific crystalline direction. However, quasi-1D semiconductors beyond Sb(2)(S,Se)(3), such as SbSeX chalcohalides, have been scarcely investigated for energy generation applications, and rarely synthesised by physical vapor deposition methodologies, despite holding the promise of widening the bandgap range (opening the door to tandem or semi-transparent devices), and showing enticing new properties such as ferroelectric behaviour and defect-tolerant nature. In this work, SbSeI and SbSeBr micro-columnar solar cells have been obtained for the first time by an innovative methodology based on the selective halogenation of Sb(2)Se(3) thin films at pressure above 1 atm. It is shown that by increasing the annealing temperature and pressure, the height and density of the micro-columnar structures grows monotonically, resulting in SbSeI single-crystal columns up to 30 μm, and tuneable morphology. In addition, solar cell prototypes with substrate configuration have shown remarkable V(oc) values above 550 mV and 1.8 eV bandgap. The Royal Society of Chemistry 2023-07-20 /pmc/articles/PMC10443182/ /pubmed/38013931 http://dx.doi.org/10.1039/d3ta03179a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Caño, Ivan
Navarro-Güell, Alejandro
Maggi, Edoardo
Barrio, Maria
Tamarit, Josep-Lluís
Svatek, Simon
Antolín, Elisa
Yan, Shunya
Barrena, Esther
Galiana, Beatriz
Placidi, Marcel
Puigdollers, Joaquim
Saucedo, Edgardo
SbSeI and SbSeBr micro-columnar solar cells by a novel high pressure-based synthesis process
title SbSeI and SbSeBr micro-columnar solar cells by a novel high pressure-based synthesis process
title_full SbSeI and SbSeBr micro-columnar solar cells by a novel high pressure-based synthesis process
title_fullStr SbSeI and SbSeBr micro-columnar solar cells by a novel high pressure-based synthesis process
title_full_unstemmed SbSeI and SbSeBr micro-columnar solar cells by a novel high pressure-based synthesis process
title_short SbSeI and SbSeBr micro-columnar solar cells by a novel high pressure-based synthesis process
title_sort sbsei and sbsebr micro-columnar solar cells by a novel high pressure-based synthesis process
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10443182/
https://www.ncbi.nlm.nih.gov/pubmed/38013931
http://dx.doi.org/10.1039/d3ta03179a
work_keys_str_mv AT canoivan sbseiandsbsebrmicrocolumnarsolarcellsbyanovelhighpressurebasedsynthesisprocess
AT navarroguellalejandro sbseiandsbsebrmicrocolumnarsolarcellsbyanovelhighpressurebasedsynthesisprocess
AT maggiedoardo sbseiandsbsebrmicrocolumnarsolarcellsbyanovelhighpressurebasedsynthesisprocess
AT barriomaria sbseiandsbsebrmicrocolumnarsolarcellsbyanovelhighpressurebasedsynthesisprocess
AT tamaritjoseplluis sbseiandsbsebrmicrocolumnarsolarcellsbyanovelhighpressurebasedsynthesisprocess
AT svateksimon sbseiandsbsebrmicrocolumnarsolarcellsbyanovelhighpressurebasedsynthesisprocess
AT antolinelisa sbseiandsbsebrmicrocolumnarsolarcellsbyanovelhighpressurebasedsynthesisprocess
AT yanshunya sbseiandsbsebrmicrocolumnarsolarcellsbyanovelhighpressurebasedsynthesisprocess
AT barrenaesther sbseiandsbsebrmicrocolumnarsolarcellsbyanovelhighpressurebasedsynthesisprocess
AT galianabeatriz sbseiandsbsebrmicrocolumnarsolarcellsbyanovelhighpressurebasedsynthesisprocess
AT placidimarcel sbseiandsbsebrmicrocolumnarsolarcellsbyanovelhighpressurebasedsynthesisprocess
AT puigdollersjoaquim sbseiandsbsebrmicrocolumnarsolarcellsbyanovelhighpressurebasedsynthesisprocess
AT saucedoedgardo sbseiandsbsebrmicrocolumnarsolarcellsbyanovelhighpressurebasedsynthesisprocess