Cargando…
Categorical Data Analysis for High-Dimensional Sparse Gene Expression Data
Categorical data analysis becomes challenging when high-dimensional sparse covariates are involved, which is often the case for omics data. We introduce a statistical procedure based on multinomial logistic regression analysis for such scenarios, including variable screening, model selection, order...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10443356/ https://www.ncbi.nlm.nih.gov/pubmed/37606439 http://dx.doi.org/10.3390/biotech12030052 |
Sumario: | Categorical data analysis becomes challenging when high-dimensional sparse covariates are involved, which is often the case for omics data. We introduce a statistical procedure based on multinomial logistic regression analysis for such scenarios, including variable screening, model selection, order selection for response categories, and variable selection. We perform our procedure on high-dimensional gene expression data with 801 patients, 2426 genes, and five types of cancerous tumors. As a result, we recommend three finalized models: one with 74 genes achieves extremely low cross-entropy loss and zero predictive error rate based on a five-fold cross-validation; and two other models with 31 and 4 genes, respectively, are recommended for prognostic multi-gene signatures. |
---|