Cargando…
Categorical Data Analysis for High-Dimensional Sparse Gene Expression Data
Categorical data analysis becomes challenging when high-dimensional sparse covariates are involved, which is often the case for omics data. We introduce a statistical procedure based on multinomial logistic regression analysis for such scenarios, including variable screening, model selection, order...
Autores principales: | Dousti Mousavi, Niloufar, Aldirawi, Hani, Yang, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10443356/ https://www.ncbi.nlm.nih.gov/pubmed/37606439 http://dx.doi.org/10.3390/biotech12030052 |
Ejemplares similares
-
Variable Selection for Sparse Data with Applications to Vaginal Microbiome and Gene Expression Data
por: Dousti Mousavi, Niloufar, et al.
Publicado: (2023) -
Sparse representations of high dimensional neural data
por: Mody, Sandeep K., et al.
Publicado: (2022) -
Multiset sparse redundancy analysis for high‐dimensional omics data
por: Csala, Attila, et al.
Publicado: (2018) -
Sparse sliced inverse regression for high dimensional data analysis
por: Hilafu, Haileab, et al.
Publicado: (2022) -
Sparse representation approaches for the classification of high-dimensional biological data
por: Li, Yifeng, et al.
Publicado: (2013)