Cargando…
The pursuit of genetic gain in agricultural crops through the application of machine-learning to genomic prediction
Current practice in agriculture applies genomic prediction to assist crop breeding in the analysis of genetic marker data. Genomic selection methods typically use linear mixed models, but using machine-learning may provide further potential for improved selection accuracy, or may provide additional...
Autores principales: | Jones, Darcy, Fornarelli, Roberta, Derbyshire, Mark, Gibberd, Mark, Barker, Kathryn, Hane, James |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10443705/ https://www.ncbi.nlm.nih.gov/pubmed/37614817 http://dx.doi.org/10.3389/fgene.2023.1186782 |
Ejemplares similares
-
Crop-Zone Weed Mycobiomes of the South-Western Australian Grain Belt
por: Michael, Pippa J., et al.
Publicado: (2020) -
CRISPR for accelerating genetic gains in under-utilized crops of the drylands: Progress and prospects
por: Sharma, Kiran K., et al.
Publicado: (2022) -
Optimization of Pesticides Spray on Crops in Agriculture using Machine Learning
por: Indu,, et al.
Publicado: (2022) -
Editorial: Genomics-Enabled Crop Genetics
por: Li, Yin, et al.
Publicado: (2021) -
Machine learning-based optimal crop selection system in smart agriculture
por: Rani, Sita, et al.
Publicado: (2023)