Cargando…
Pharmacological inhibition of TAK1 prevents and induces regression of experimental organ fibrosis
Multiorgan fibrosis in systemic sclerosis (SSc) accounts for substantial mortality and lacks effective therapies. Lying at the crossroad of TGF-β and TLR signaling, TGF-β–activated kinase 1 (TAK1) might have a pathogenic role in SSc. We therefore sought to evaluate the TAK1 signaling axis in patient...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Clinical Investigation
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10443806/ https://www.ncbi.nlm.nih.gov/pubmed/37306632 http://dx.doi.org/10.1172/jci.insight.165358 |
Sumario: | Multiorgan fibrosis in systemic sclerosis (SSc) accounts for substantial mortality and lacks effective therapies. Lying at the crossroad of TGF-β and TLR signaling, TGF-β–activated kinase 1 (TAK1) might have a pathogenic role in SSc. We therefore sought to evaluate the TAK1 signaling axis in patients with SSc and to investigate pharmacological TAK1 blockade using a potentially novel drug-like selective TAK1 inhibitor, HS-276. Inhibiting TAK1 abrogated TGF-β1 stimulation of collagen synthesis and myofibroblasts differentiation in healthy skin fibroblasts, and it ameliorated constitutive activation of SSc skin fibroblasts. Moreover, treatment with HS-276 prevented dermal and pulmonary fibrosis and reduced the expression of profibrotic mediators in bleomycin-treated mice. Importantly, initiating HS-276 treatment even after fibrosis was already established prevented its progression in affected organs. Together, these findings implicate TAK1 in the pathogenesis of SSc and identify targeted TAK1 inhibition using a small molecule as a potential strategy for the treatment of SSc and other fibrotic diseases. |
---|