Cargando…
Spontaneous periodic polarization wave in helielectric fluids
By analogy with spin waves in ferromagnetic systems, the polarization (or dipole) wave is the electric counterpart that remains elusive. Here, we discover that the helielectricity, i.e. a polarization field with helicoidal helices that corresponds to a quasi-layered chiral nematic environment, cause...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10443924/ https://www.ncbi.nlm.nih.gov/pubmed/37614674 http://dx.doi.org/10.1093/pnasnexus/pgad265 |
Sumario: | By analogy with spin waves in ferromagnetic systems, the polarization (or dipole) wave is the electric counterpart that remains elusive. Here, we discover that the helielectricity, i.e. a polarization field with helicoidal helices that corresponds to a quasi-layered chiral nematic environment, causes a spontaneous formation of large-scale polarization waves in the form of the sinusoidal function. Both experimental and theoretical analyses reveal that the polarization ordering over a threshold polarization strength violates the inherent periodicity of the polarization helices, thus penalizing the compression energy. It drives a second-order structural transition to a periodically modulated polarization wave state. The roles of chirality and confinement condition are discussed. |
---|