Cargando…

Human iPSC-derived neural progenitor cells secreting GDNF provide protection in rodent models of ALS and retinal degeneration

Human induced pluripotent stem cells (iPSCs) are a renewable cell source that can be differentiated into neural progenitor cells (iNPCs) and transduced with glial cell line-derived neurotrophic factor (iNPC-GDNFs). The goal of the current study is to characterize iNPC-GDNFs and test their therapeuti...

Descripción completa

Detalles Bibliográficos
Autores principales: Laperle, Alexander H., Moser, V. Alexandra, Avalos, Pablo, Lu, Bin, Wu, Amanda, Fulton, Aaron, Ramirez, Stephany, Garcia, Veronica J., Bell, Shaughn, Ho, Ritchie, Lawless, George, Roxas, Kristina, Shahin, Saba, Shelest, Oksana, Svendsen, Soshana, Wang, Shaomei, Svendsen, Clive N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10444557/
https://www.ncbi.nlm.nih.gov/pubmed/37084724
http://dx.doi.org/10.1016/j.stemcr.2023.03.016
Descripción
Sumario:Human induced pluripotent stem cells (iPSCs) are a renewable cell source that can be differentiated into neural progenitor cells (iNPCs) and transduced with glial cell line-derived neurotrophic factor (iNPC-GDNFs). The goal of the current study is to characterize iNPC-GDNFs and test their therapeutic potential and safety. Single-nuclei RNA-seq show iNPC-GDNFs express NPC markers. iNPC-GDNFs delivered into the subretinal space of the Royal College of Surgeons rodent model of retinal degeneration preserve photoreceptors and visual function. Additionally, iNPC-GDNF transplants in the spinal cord of SOD1(G93A) amyotrophic lateral sclerosis (ALS) rats preserve motor neurons. Finally, iNPC-GDNF transplants in the spinal cord of athymic nude rats survive and produce GDNF for 9 months, with no signs of tumor formation or continual cell proliferation. iNPC-GDNFs survive long-term, are safe, and provide neuroprotection in models of both retinal degeneration and ALS, indicating their potential as a combined cell and gene therapy for various neurodegenerative diseases.