Cargando…
An in silico and in vitro human neuronal network model reveals cellular mechanisms beyond Na(V)1.1 underlying Dravet syndrome
Human induced pluripotent stem cell (hiPSC)-derived neuronal networks on multi-electrode arrays (MEAs) provide a unique phenotyping tool to study neurological disorders. However, it is difficult to infer cellular mechanisms underlying these phenotypes. Computational modeling can utilize the rich dat...
Autores principales: | Doorn, Nina, van Hugte, Eline J.H., Ciptasari, Ummi, Mordelt, Annika, Meijer, Hil G.E., Schubert, Dirk, Frega, Monica, Nadif Kasri, Nael, van Putten, Michel J.A.M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10444571/ https://www.ncbi.nlm.nih.gov/pubmed/37419110 http://dx.doi.org/10.1016/j.stemcr.2023.06.003 |
Ejemplares similares
-
A human in vitro neuronal model for studying homeostatic plasticity at the network level
por: Yuan, Xiuming, et al.
Publicado: (2023) -
Human neuronal networks on micro-electrode arrays are a highly robust tool to study disease-specific genotype-phenotype correlations in vitro
por: Mossink, Britt, et al.
Publicado: (2021) -
SCN1A-deficient excitatory neuronal networks display mutation-specific phenotypes
por: van Hugte, Eline J H, et al.
Publicado: (2023) -
Euchromatin histone methyltransferase 1 regulates cortical neuronal network development
por: Bart Martens, Marijn, et al.
Publicado: (2016) -
SETD1A Mediated H3K4 Methylation and Its Role in Neurodevelopmental and Neuropsychiatric Disorders
por: Wang, Shan, et al.
Publicado: (2021)