Cargando…
Machine learning and metagenomics reveal shared antimicrobial resistance profiles across multiple chicken farms and abattoirs in China
China is the largest global consumer of antimicrobials and improving surveillance methods could help to reduce antimicrobial resistance (AMR) spread. Here we report the surveillance of ten large-scale chicken farms and four connected abattoirs in three Chinese provinces over 2.5 years. Using a data...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10444626/ https://www.ncbi.nlm.nih.gov/pubmed/37563495 http://dx.doi.org/10.1038/s43016-023-00814-w |
_version_ | 1785093989774393344 |
---|---|
author | Baker, Michelle Zhang, Xibin Maciel-Guerra, Alexandre Dong, Yinping Wang, Wei Hu, Yujie Renney, David Hu, Yue Liu, Longhai Li, Hui Tong, Zhiqin Zhang, Meimei Geng, Yingzhi Zhao, Li Hao, Zhihui Senin, Nicola Chen, Junshi Peng, Zixin Li, Fengqin Dottorini, Tania |
author_facet | Baker, Michelle Zhang, Xibin Maciel-Guerra, Alexandre Dong, Yinping Wang, Wei Hu, Yujie Renney, David Hu, Yue Liu, Longhai Li, Hui Tong, Zhiqin Zhang, Meimei Geng, Yingzhi Zhao, Li Hao, Zhihui Senin, Nicola Chen, Junshi Peng, Zixin Li, Fengqin Dottorini, Tania |
author_sort | Baker, Michelle |
collection | PubMed |
description | China is the largest global consumer of antimicrobials and improving surveillance methods could help to reduce antimicrobial resistance (AMR) spread. Here we report the surveillance of ten large-scale chicken farms and four connected abattoirs in three Chinese provinces over 2.5 years. Using a data mining approach based on machine learning, we analysed 461 microbiomes from birds, carcasses and environments, identifying 145 potentially mobile antibiotic resistance genes (ARGs) shared between chickens and environments across all farms. A core set of 233 ARGs and 186 microbial species extracted from the chicken gut microbiome correlated with the AMR profiles of Escherichia coli colonizing the same gut, including Arcobacter, Acinetobacter and Sphingobacterium, clinically relevant for humans, and 38 clinically relevant ARGs. Temperature and humidity in the barns were also correlated with ARG presence. We reveal an intricate network of correlations between environments, microbial communities and AMR, suggesting multiple routes to improving AMR surveillance in livestock production. |
format | Online Article Text |
id | pubmed-10444626 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-104446262023-08-24 Machine learning and metagenomics reveal shared antimicrobial resistance profiles across multiple chicken farms and abattoirs in China Baker, Michelle Zhang, Xibin Maciel-Guerra, Alexandre Dong, Yinping Wang, Wei Hu, Yujie Renney, David Hu, Yue Liu, Longhai Li, Hui Tong, Zhiqin Zhang, Meimei Geng, Yingzhi Zhao, Li Hao, Zhihui Senin, Nicola Chen, Junshi Peng, Zixin Li, Fengqin Dottorini, Tania Nat Food Article China is the largest global consumer of antimicrobials and improving surveillance methods could help to reduce antimicrobial resistance (AMR) spread. Here we report the surveillance of ten large-scale chicken farms and four connected abattoirs in three Chinese provinces over 2.5 years. Using a data mining approach based on machine learning, we analysed 461 microbiomes from birds, carcasses and environments, identifying 145 potentially mobile antibiotic resistance genes (ARGs) shared between chickens and environments across all farms. A core set of 233 ARGs and 186 microbial species extracted from the chicken gut microbiome correlated with the AMR profiles of Escherichia coli colonizing the same gut, including Arcobacter, Acinetobacter and Sphingobacterium, clinically relevant for humans, and 38 clinically relevant ARGs. Temperature and humidity in the barns were also correlated with ARG presence. We reveal an intricate network of correlations between environments, microbial communities and AMR, suggesting multiple routes to improving AMR surveillance in livestock production. Nature Publishing Group UK 2023-08-10 2023 /pmc/articles/PMC10444626/ /pubmed/37563495 http://dx.doi.org/10.1038/s43016-023-00814-w Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Baker, Michelle Zhang, Xibin Maciel-Guerra, Alexandre Dong, Yinping Wang, Wei Hu, Yujie Renney, David Hu, Yue Liu, Longhai Li, Hui Tong, Zhiqin Zhang, Meimei Geng, Yingzhi Zhao, Li Hao, Zhihui Senin, Nicola Chen, Junshi Peng, Zixin Li, Fengqin Dottorini, Tania Machine learning and metagenomics reveal shared antimicrobial resistance profiles across multiple chicken farms and abattoirs in China |
title | Machine learning and metagenomics reveal shared antimicrobial resistance profiles across multiple chicken farms and abattoirs in China |
title_full | Machine learning and metagenomics reveal shared antimicrobial resistance profiles across multiple chicken farms and abattoirs in China |
title_fullStr | Machine learning and metagenomics reveal shared antimicrobial resistance profiles across multiple chicken farms and abattoirs in China |
title_full_unstemmed | Machine learning and metagenomics reveal shared antimicrobial resistance profiles across multiple chicken farms and abattoirs in China |
title_short | Machine learning and metagenomics reveal shared antimicrobial resistance profiles across multiple chicken farms and abattoirs in China |
title_sort | machine learning and metagenomics reveal shared antimicrobial resistance profiles across multiple chicken farms and abattoirs in china |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10444626/ https://www.ncbi.nlm.nih.gov/pubmed/37563495 http://dx.doi.org/10.1038/s43016-023-00814-w |
work_keys_str_mv | AT bakermichelle machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina AT zhangxibin machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina AT macielguerraalexandre machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina AT dongyinping machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina AT wangwei machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina AT huyujie machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina AT renneydavid machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina AT huyue machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina AT liulonghai machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina AT lihui machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina AT tongzhiqin machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina AT zhangmeimei machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina AT gengyingzhi machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina AT zhaoli machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina AT haozhihui machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina AT seninnicola machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina AT chenjunshi machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina AT pengzixin machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina AT lifengqin machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina AT dottorinitania machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina |