Cargando…

Machine learning and metagenomics reveal shared antimicrobial resistance profiles across multiple chicken farms and abattoirs in China

China is the largest global consumer of antimicrobials and improving surveillance methods could help to reduce antimicrobial resistance (AMR) spread. Here we report the surveillance of ten large-scale chicken farms and four connected abattoirs in three Chinese provinces over 2.5 years. Using a data...

Descripción completa

Detalles Bibliográficos
Autores principales: Baker, Michelle, Zhang, Xibin, Maciel-Guerra, Alexandre, Dong, Yinping, Wang, Wei, Hu, Yujie, Renney, David, Hu, Yue, Liu, Longhai, Li, Hui, Tong, Zhiqin, Zhang, Meimei, Geng, Yingzhi, Zhao, Li, Hao, Zhihui, Senin, Nicola, Chen, Junshi, Peng, Zixin, Li, Fengqin, Dottorini, Tania
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10444626/
https://www.ncbi.nlm.nih.gov/pubmed/37563495
http://dx.doi.org/10.1038/s43016-023-00814-w
_version_ 1785093989774393344
author Baker, Michelle
Zhang, Xibin
Maciel-Guerra, Alexandre
Dong, Yinping
Wang, Wei
Hu, Yujie
Renney, David
Hu, Yue
Liu, Longhai
Li, Hui
Tong, Zhiqin
Zhang, Meimei
Geng, Yingzhi
Zhao, Li
Hao, Zhihui
Senin, Nicola
Chen, Junshi
Peng, Zixin
Li, Fengqin
Dottorini, Tania
author_facet Baker, Michelle
Zhang, Xibin
Maciel-Guerra, Alexandre
Dong, Yinping
Wang, Wei
Hu, Yujie
Renney, David
Hu, Yue
Liu, Longhai
Li, Hui
Tong, Zhiqin
Zhang, Meimei
Geng, Yingzhi
Zhao, Li
Hao, Zhihui
Senin, Nicola
Chen, Junshi
Peng, Zixin
Li, Fengqin
Dottorini, Tania
author_sort Baker, Michelle
collection PubMed
description China is the largest global consumer of antimicrobials and improving surveillance methods could help to reduce antimicrobial resistance (AMR) spread. Here we report the surveillance of ten large-scale chicken farms and four connected abattoirs in three Chinese provinces over 2.5 years. Using a data mining approach based on machine learning, we analysed 461 microbiomes from birds, carcasses and environments, identifying 145 potentially mobile antibiotic resistance genes (ARGs) shared between chickens and environments across all farms. A core set of 233 ARGs and 186 microbial species extracted from the chicken gut microbiome correlated with the AMR profiles of Escherichia coli colonizing the same gut, including Arcobacter, Acinetobacter and Sphingobacterium, clinically relevant for humans, and 38 clinically relevant ARGs. Temperature and humidity in the barns were also correlated with ARG presence. We reveal an intricate network of correlations between environments, microbial communities and AMR, suggesting multiple routes to improving AMR surveillance in livestock production.
format Online
Article
Text
id pubmed-10444626
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-104446262023-08-24 Machine learning and metagenomics reveal shared antimicrobial resistance profiles across multiple chicken farms and abattoirs in China Baker, Michelle Zhang, Xibin Maciel-Guerra, Alexandre Dong, Yinping Wang, Wei Hu, Yujie Renney, David Hu, Yue Liu, Longhai Li, Hui Tong, Zhiqin Zhang, Meimei Geng, Yingzhi Zhao, Li Hao, Zhihui Senin, Nicola Chen, Junshi Peng, Zixin Li, Fengqin Dottorini, Tania Nat Food Article China is the largest global consumer of antimicrobials and improving surveillance methods could help to reduce antimicrobial resistance (AMR) spread. Here we report the surveillance of ten large-scale chicken farms and four connected abattoirs in three Chinese provinces over 2.5 years. Using a data mining approach based on machine learning, we analysed 461 microbiomes from birds, carcasses and environments, identifying 145 potentially mobile antibiotic resistance genes (ARGs) shared between chickens and environments across all farms. A core set of 233 ARGs and 186 microbial species extracted from the chicken gut microbiome correlated with the AMR profiles of Escherichia coli colonizing the same gut, including Arcobacter, Acinetobacter and Sphingobacterium, clinically relevant for humans, and 38 clinically relevant ARGs. Temperature and humidity in the barns were also correlated with ARG presence. We reveal an intricate network of correlations between environments, microbial communities and AMR, suggesting multiple routes to improving AMR surveillance in livestock production. Nature Publishing Group UK 2023-08-10 2023 /pmc/articles/PMC10444626/ /pubmed/37563495 http://dx.doi.org/10.1038/s43016-023-00814-w Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Baker, Michelle
Zhang, Xibin
Maciel-Guerra, Alexandre
Dong, Yinping
Wang, Wei
Hu, Yujie
Renney, David
Hu, Yue
Liu, Longhai
Li, Hui
Tong, Zhiqin
Zhang, Meimei
Geng, Yingzhi
Zhao, Li
Hao, Zhihui
Senin, Nicola
Chen, Junshi
Peng, Zixin
Li, Fengqin
Dottorini, Tania
Machine learning and metagenomics reveal shared antimicrobial resistance profiles across multiple chicken farms and abattoirs in China
title Machine learning and metagenomics reveal shared antimicrobial resistance profiles across multiple chicken farms and abattoirs in China
title_full Machine learning and metagenomics reveal shared antimicrobial resistance profiles across multiple chicken farms and abattoirs in China
title_fullStr Machine learning and metagenomics reveal shared antimicrobial resistance profiles across multiple chicken farms and abattoirs in China
title_full_unstemmed Machine learning and metagenomics reveal shared antimicrobial resistance profiles across multiple chicken farms and abattoirs in China
title_short Machine learning and metagenomics reveal shared antimicrobial resistance profiles across multiple chicken farms and abattoirs in China
title_sort machine learning and metagenomics reveal shared antimicrobial resistance profiles across multiple chicken farms and abattoirs in china
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10444626/
https://www.ncbi.nlm.nih.gov/pubmed/37563495
http://dx.doi.org/10.1038/s43016-023-00814-w
work_keys_str_mv AT bakermichelle machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina
AT zhangxibin machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina
AT macielguerraalexandre machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina
AT dongyinping machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina
AT wangwei machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina
AT huyujie machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina
AT renneydavid machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina
AT huyue machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina
AT liulonghai machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina
AT lihui machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina
AT tongzhiqin machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina
AT zhangmeimei machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina
AT gengyingzhi machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina
AT zhaoli machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina
AT haozhihui machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina
AT seninnicola machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina
AT chenjunshi machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina
AT pengzixin machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina
AT lifengqin machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina
AT dottorinitania machinelearningandmetagenomicsrevealsharedantimicrobialresistanceprofilesacrossmultiplechickenfarmsandabattoirsinchina