Cargando…

Relationship chains of subhealth physical examination indicators: a cross-sectional study using the PLS-SEM approach

Subhealth is a transitional state between health and disease, and it can be detected through routine physical check-ups. However, the complexity and diversity of physical examination items and the difficulty of quantifying subhealth manifestations are the main problems that hinder its treatment. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yu, Lou, Jindi, Li, Jun, Shi, Yulin, Jiang, Tao, Tu, Liping, Xu, Jiatuo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10444823/
https://www.ncbi.nlm.nih.gov/pubmed/37608032
http://dx.doi.org/10.1038/s41598-023-39934-5
_version_ 1785094037973237760
author Wang, Yu
Lou, Jindi
Li, Jun
Shi, Yulin
Jiang, Tao
Tu, Liping
Xu, Jiatuo
author_facet Wang, Yu
Lou, Jindi
Li, Jun
Shi, Yulin
Jiang, Tao
Tu, Liping
Xu, Jiatuo
author_sort Wang, Yu
collection PubMed
description Subhealth is a transitional state between health and disease, and it can be detected through routine physical check-ups. However, the complexity and diversity of physical examination items and the difficulty of quantifying subhealth manifestations are the main problems that hinder its treatment. The aim of this study was to systematically investigate the physical examination performance of the subhealthy population and further explore the deeper relationships between indicators. Indicators were obtained for 878 subjects, including basic information, Western medicine indicators, inquiries of traditional Chinese medicine and sublingual vein (SV) characteristics. Statistical differences were analysed using R software. To explore the distribution of symptoms and symptom clusters in subhealth, partial least squares-structural equation modelling (PLS-SEM) was applied to the subhealth physical examination index, and a structural model was developed to verify whether the relationship chain between the latent variables was reasonable. Finally, the reliability and validity of the PLS-SE model were assessed. The most common subclinical clinical symptoms were limb soreness (37.6%), fatigue (31.6%), shoulder and neck pain (30.5%) and dry eyes (29.2%). The redness of the SV in the subhealthy group was paler than that in the healthy group (p < 0.001). This study validates the establishment of the directed acyclic relationship chain in the subhealthy group: the path from routine blood tests to lipid metabolism (t = 7.878, p < 0.001), the path from lipid metabolism to obesity (t = 8.410, p < 0.001), the path from obesity to SV characteristics (t = 2.237, p = 0.025), and the path from liver function to SV characteristics (t = 2.215, p = 0.027). The innovative application of PLS-SEM to the study of subhealth has revealed the existence of a chain of relationships between physical examination indicators, which will provide a basis for further exploration of subhealth mechanisms and causal inference. This study has identified the typical symptoms of subhealth, and their early management will help to advance the treatment of diseases.
format Online
Article
Text
id pubmed-10444823
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-104448232023-08-24 Relationship chains of subhealth physical examination indicators: a cross-sectional study using the PLS-SEM approach Wang, Yu Lou, Jindi Li, Jun Shi, Yulin Jiang, Tao Tu, Liping Xu, Jiatuo Sci Rep Article Subhealth is a transitional state between health and disease, and it can be detected through routine physical check-ups. However, the complexity and diversity of physical examination items and the difficulty of quantifying subhealth manifestations are the main problems that hinder its treatment. The aim of this study was to systematically investigate the physical examination performance of the subhealthy population and further explore the deeper relationships between indicators. Indicators were obtained for 878 subjects, including basic information, Western medicine indicators, inquiries of traditional Chinese medicine and sublingual vein (SV) characteristics. Statistical differences were analysed using R software. To explore the distribution of symptoms and symptom clusters in subhealth, partial least squares-structural equation modelling (PLS-SEM) was applied to the subhealth physical examination index, and a structural model was developed to verify whether the relationship chain between the latent variables was reasonable. Finally, the reliability and validity of the PLS-SE model were assessed. The most common subclinical clinical symptoms were limb soreness (37.6%), fatigue (31.6%), shoulder and neck pain (30.5%) and dry eyes (29.2%). The redness of the SV in the subhealthy group was paler than that in the healthy group (p < 0.001). This study validates the establishment of the directed acyclic relationship chain in the subhealthy group: the path from routine blood tests to lipid metabolism (t = 7.878, p < 0.001), the path from lipid metabolism to obesity (t = 8.410, p < 0.001), the path from obesity to SV characteristics (t = 2.237, p = 0.025), and the path from liver function to SV characteristics (t = 2.215, p = 0.027). The innovative application of PLS-SEM to the study of subhealth has revealed the existence of a chain of relationships between physical examination indicators, which will provide a basis for further exploration of subhealth mechanisms and causal inference. This study has identified the typical symptoms of subhealth, and their early management will help to advance the treatment of diseases. Nature Publishing Group UK 2023-08-22 /pmc/articles/PMC10444823/ /pubmed/37608032 http://dx.doi.org/10.1038/s41598-023-39934-5 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Wang, Yu
Lou, Jindi
Li, Jun
Shi, Yulin
Jiang, Tao
Tu, Liping
Xu, Jiatuo
Relationship chains of subhealth physical examination indicators: a cross-sectional study using the PLS-SEM approach
title Relationship chains of subhealth physical examination indicators: a cross-sectional study using the PLS-SEM approach
title_full Relationship chains of subhealth physical examination indicators: a cross-sectional study using the PLS-SEM approach
title_fullStr Relationship chains of subhealth physical examination indicators: a cross-sectional study using the PLS-SEM approach
title_full_unstemmed Relationship chains of subhealth physical examination indicators: a cross-sectional study using the PLS-SEM approach
title_short Relationship chains of subhealth physical examination indicators: a cross-sectional study using the PLS-SEM approach
title_sort relationship chains of subhealth physical examination indicators: a cross-sectional study using the pls-sem approach
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10444823/
https://www.ncbi.nlm.nih.gov/pubmed/37608032
http://dx.doi.org/10.1038/s41598-023-39934-5
work_keys_str_mv AT wangyu relationshipchainsofsubhealthphysicalexaminationindicatorsacrosssectionalstudyusingtheplssemapproach
AT loujindi relationshipchainsofsubhealthphysicalexaminationindicatorsacrosssectionalstudyusingtheplssemapproach
AT lijun relationshipchainsofsubhealthphysicalexaminationindicatorsacrosssectionalstudyusingtheplssemapproach
AT shiyulin relationshipchainsofsubhealthphysicalexaminationindicatorsacrosssectionalstudyusingtheplssemapproach
AT jiangtao relationshipchainsofsubhealthphysicalexaminationindicatorsacrosssectionalstudyusingtheplssemapproach
AT tuliping relationshipchainsofsubhealthphysicalexaminationindicatorsacrosssectionalstudyusingtheplssemapproach
AT xujiatuo relationshipchainsofsubhealthphysicalexaminationindicatorsacrosssectionalstudyusingtheplssemapproach