Cargando…

An exhaustive scrutiny to amplify the heating prospects by devising a core@shell nanostructure for constructive magnetic hyperthermia applications

An interfacial integration at the nanoscale domain through a core@shell (CS) nanostructure has constructively unbarred a wide dimension to researchers on biomedical applications, especially for magnetic fluid hyperthermia. Lately, the interconnection of the exchange bias effect (EBE) through the int...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsopoe, S. P., Borgohain, C., Kar, Manoranjan, Kumar Panda, Shantanu, Borah, J. P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10444858/
https://www.ncbi.nlm.nih.gov/pubmed/37608046
http://dx.doi.org/10.1038/s41598-023-39766-3
Descripción
Sumario:An interfacial integration at the nanoscale domain through a core@shell (CS) nanostructure has constructively unbarred a wide dimension to researchers on biomedical applications, especially for magnetic fluid hyperthermia. Lately, the interconnection of the exchange bias effect (EBE) through the interface coupling to the magnetic heating efficiency has uttered its utmost prominence for researchers. Here, we delineate the ascendency of the heating ability through a coalescing assembly of mixed ferrite Co(0.5)Zn(0.5) Fe(2)O(4) (CZ) and soft magnetic material Fe(3)O(4) (F), by devising a network of CoZnFe(2)O(4)@Fe(3)O(4) (CZF) CS nanostructure. A hefty interface activity with validation of the EBE phenomenon is divulged through magnetic scrutiny for the CS sample. The magnetic nanoparticles heating response to applied magnetic field and frequency is discerned at three distinct fields, where the outcome prevailed to inflated specific loss power for CS CZF in distinction to bare F and CZ samples for all the assessments. Remarkably; a lofty intrinsic loss parameter is also perceived for the CS sample recorded to about 5.36 nHm(2) g(−1); which is another eccentric outcome that significantly labels the CS CZF sample as a potentially high heating competence agent. This comprehension accords to a finer perspective to meliorate the theranostic environment for hyperthermia applications.