Cargando…
Physics-informed neural networks for predicting gas flow dynamics and unknown parameters in diesel engines
This paper presents a physics-informed neural network (PINN) approach for monitoring the health of diesel engines. The aim is to evaluate the engine dynamics, identify unknown parameters in a “mean value” model, and anticipate maintenance requirements. The PINN model is applied to diesel engines wit...
Autores principales: | Nath, Kamaljyoti, Meng, Xuhui, Smith, Daniel J., Karniadakis, George Em |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10444866/ https://www.ncbi.nlm.nih.gov/pubmed/37607951 http://dx.doi.org/10.1038/s41598-023-39989-4 |
Ejemplares similares
-
Systems biology informed deep learning for inferring parameters and hidden dynamics
por: Yazdani, Alireza, et al.
Publicado: (2020) -
Analyses of internal structures and defects in materials using physics-informed neural networks
por: Zhang, Enrui, et al.
Publicado: (2022) -
Variable-Order Fractional Models for Wall-Bounded Turbulent Flows
por: Song, Fangying, et al.
Publicado: (2021) -
Multiphase Flow Dynamics 4: Turbulence, Gas Adsorption and Release, Diesel Fuel Properties
por: Kolev, Nikolay Ivanov
Publicado: (2012) -
Data set of multi-objective optimization of diesel engine parameters
por: Sathish Kumar, R., et al.
Publicado: (2019)