Cargando…
Deep learning for automated materials characterisation in core-loss electron energy loss spectroscopy
Electron energy loss spectroscopy (EELS) is a well established technique in electron microscopy that yields information on the elemental content of a sample in a very direct manner. One of the persisting limitations of EELS is the requirement for manual identification of core-loss edges and their co...
Autores principales: | Annys, Arno, Jannis, Daen, Verbeeck, Johan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10444881/ https://www.ncbi.nlm.nih.gov/pubmed/37608067 http://dx.doi.org/10.1038/s41598-023-40943-7 |
Ejemplares similares
-
Electron energy loss spectroscopy database synthesis and automation of core-loss edge recognition by deep-learning neural networks
por: Kong, Lingli, et al.
Publicado: (2022) -
Electron energy-loss spectroscopy in the electron microscope
por: Egerton, Ray F
Publicado: (1995) -
Accuracy in Microanalysis by Electron Energy-Loss Spectroscopy
por: Egerton, Ray F.
Publicado: (1988) -
Ultrafast core-loss spectroscopy in four-dimensional electron microscopy
por: van der Veen, Renske M., et al.
Publicado: (2015) -
Data-driven approach for the prediction and interpretation of core-electron loss spectroscopy
por: Kiyohara, Shin, et al.
Publicado: (2018)