Cargando…

Effect of nanoparticle size on their distribution and retention in chronic inflammation sites

Nanomedicines are increasingly researched and used for the treatment of chronic inflammatory diseases. Herein, the effect of the size of nanoparticles on their distribution and retention in chronic inflammatory sites, as compared to healthy tissues, was studied in a mouse model with chronic inflamma...

Descripción completa

Detalles Bibliográficos
Autores principales: Aldayel, Abdulaziz M., Hufnagel, Stephanie, O’Mary, Hannah L., Valdes, Solange A., Alzhrani, Riyad F., Xu, Haiyue, Cui, Zhengrong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10444937/
https://www.ncbi.nlm.nih.gov/pubmed/37606823
http://dx.doi.org/10.1186/s11671-023-03882-w
Descripción
Sumario:Nanomedicines are increasingly researched and used for the treatment of chronic inflammatory diseases. Herein, the effect of the size of nanoparticles on their distribution and retention in chronic inflammatory sites, as compared to healthy tissues, was studied in a mouse model with chronic inflammation in one of the hind footpads. Using PEGylated gold nanoparticles of 2, 10, 100, and 200 nm, we found that although the smaller nanoparticles of 2 and 10 nm showed greater distribution and slower clearance in the inflamed footpad than the relatively larger nanoparticles of 100 and 200 nm, the larger nanoparticles of 100 and 200 nm were more selectively distributed in the inflamed hind footpad than in the healthy hind footpad in the same mouse. Based on these findings, we prepared protein nanoparticles of 100–200 nm with albumin, IgG antibody, or anti-TNF-α monoclonal antibody (mAb). The nanoparticles can release proteins in response to high redox activity and/or low pH, conditions seen in chronic inflammation sites. We then showed that upon intravenous injection, those stimuli-responsive protein nanoparticles distributed more selectively in the inflamed footpad than free proteins and remained longer in the inflamed footpad than similar protein nanoparticles that are not sensitive to high redox activity or low pH. These findings support the feasibility of increasing the selectivity of nanomedicines and protein therapeutics to chronic inflammation sites and prolonging their retention at the sites by innovative nanoparticle engineering. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s11671-023-03882-w.