Cargando…
Nonalcoholic Steatohepatitis Disrupts Diurnal Liver Transcriptome Rhythms in Mice
BACKGROUND & AIMS: The liver ensures organismal homeostasis through modulation of physiological functions over the course of the day. How liver diseases such as nonalcoholic steatohepatitis (NASH) affect daily transcriptome rhythms in the liver remains elusive. METHODS: To start closing this gap...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10444956/ https://www.ncbi.nlm.nih.gov/pubmed/37270062 http://dx.doi.org/10.1016/j.jcmgh.2023.05.008 |
_version_ | 1785094068099874816 |
---|---|
author | de Assis, Leonardo Vinicius Monteiro Demir, Münevver Oster, Henrik |
author_facet | de Assis, Leonardo Vinicius Monteiro Demir, Münevver Oster, Henrik |
author_sort | de Assis, Leonardo Vinicius Monteiro |
collection | PubMed |
description | BACKGROUND & AIMS: The liver ensures organismal homeostasis through modulation of physiological functions over the course of the day. How liver diseases such as nonalcoholic steatohepatitis (NASH) affect daily transcriptome rhythms in the liver remains elusive. METHODS: To start closing this gap, we evaluated the impact of NASH on the diurnal regulation of the liver transcriptome in mice. In addition, we investigated how stringent consideration of circadian rhythmicity affects the outcomes of NASH transcriptome analyses. RESULTS: Comparative rhythm analysis of the liver transcriptome from diet-induced NASH and control mice showed an almost 3-hour phase advance in global gene expression rhythms. Rhythmically expressed genes associated with DNA repair and cell-cycle regulation showed increased overall expression and circadian amplitude. In contrast, lipid and glucose metabolism–associated genes showed loss of circadian amplitude, reduced overall expression, and phase advances in NASH livers. Comparison of NASH-induced liver transcriptome responses between published studies showed little overlap (12%) in differentially expressed genes (DEGs). However, by controlling for sampling time and using circadian analytical tools, a 7-fold increase in DEG detection was achieved compared with methods without time control. CONCLUSIONS: NASH had a strong effect on circadian liver transcriptome rhythms with phase- and amplitude-specific effects for key metabolic and cell repair pathways, respectively. Accounting for circadian rhythms in NASH transcriptome studies markedly improves DEG detection and enhances reproducibility. |
format | Online Article Text |
id | pubmed-10444956 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-104449562023-08-24 Nonalcoholic Steatohepatitis Disrupts Diurnal Liver Transcriptome Rhythms in Mice de Assis, Leonardo Vinicius Monteiro Demir, Münevver Oster, Henrik Cell Mol Gastroenterol Hepatol Original Research BACKGROUND & AIMS: The liver ensures organismal homeostasis through modulation of physiological functions over the course of the day. How liver diseases such as nonalcoholic steatohepatitis (NASH) affect daily transcriptome rhythms in the liver remains elusive. METHODS: To start closing this gap, we evaluated the impact of NASH on the diurnal regulation of the liver transcriptome in mice. In addition, we investigated how stringent consideration of circadian rhythmicity affects the outcomes of NASH transcriptome analyses. RESULTS: Comparative rhythm analysis of the liver transcriptome from diet-induced NASH and control mice showed an almost 3-hour phase advance in global gene expression rhythms. Rhythmically expressed genes associated with DNA repair and cell-cycle regulation showed increased overall expression and circadian amplitude. In contrast, lipid and glucose metabolism–associated genes showed loss of circadian amplitude, reduced overall expression, and phase advances in NASH livers. Comparison of NASH-induced liver transcriptome responses between published studies showed little overlap (12%) in differentially expressed genes (DEGs). However, by controlling for sampling time and using circadian analytical tools, a 7-fold increase in DEG detection was achieved compared with methods without time control. CONCLUSIONS: NASH had a strong effect on circadian liver transcriptome rhythms with phase- and amplitude-specific effects for key metabolic and cell repair pathways, respectively. Accounting for circadian rhythms in NASH transcriptome studies markedly improves DEG detection and enhances reproducibility. Elsevier 2023-06-02 /pmc/articles/PMC10444956/ /pubmed/37270062 http://dx.doi.org/10.1016/j.jcmgh.2023.05.008 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Research de Assis, Leonardo Vinicius Monteiro Demir, Münevver Oster, Henrik Nonalcoholic Steatohepatitis Disrupts Diurnal Liver Transcriptome Rhythms in Mice |
title | Nonalcoholic Steatohepatitis Disrupts Diurnal Liver Transcriptome Rhythms in Mice |
title_full | Nonalcoholic Steatohepatitis Disrupts Diurnal Liver Transcriptome Rhythms in Mice |
title_fullStr | Nonalcoholic Steatohepatitis Disrupts Diurnal Liver Transcriptome Rhythms in Mice |
title_full_unstemmed | Nonalcoholic Steatohepatitis Disrupts Diurnal Liver Transcriptome Rhythms in Mice |
title_short | Nonalcoholic Steatohepatitis Disrupts Diurnal Liver Transcriptome Rhythms in Mice |
title_sort | nonalcoholic steatohepatitis disrupts diurnal liver transcriptome rhythms in mice |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10444956/ https://www.ncbi.nlm.nih.gov/pubmed/37270062 http://dx.doi.org/10.1016/j.jcmgh.2023.05.008 |
work_keys_str_mv | AT deassisleonardoviniciusmonteiro nonalcoholicsteatohepatitisdisruptsdiurnallivertranscriptomerhythmsinmice AT demirmunevver nonalcoholicsteatohepatitisdisruptsdiurnallivertranscriptomerhythmsinmice AT osterhenrik nonalcoholicsteatohepatitisdisruptsdiurnallivertranscriptomerhythmsinmice |