Cargando…
BERTrand—peptide:TCR binding prediction using Bidirectional Encoder Representations from Transformers augmented with random TCR pairing
MOTIVATION: The advent of T-cell receptor (TCR) sequencing experiments allowed for a significant increase in the amount of peptide:TCR binding data available and a number of machine-learning models appeared in recent years. High-quality prediction models for a fixed epitope sequence are feasible, pr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10444968/ https://www.ncbi.nlm.nih.gov/pubmed/37535685 http://dx.doi.org/10.1093/bioinformatics/btad468 |
Sumario: | MOTIVATION: The advent of T-cell receptor (TCR) sequencing experiments allowed for a significant increase in the amount of peptide:TCR binding data available and a number of machine-learning models appeared in recent years. High-quality prediction models for a fixed epitope sequence are feasible, provided enough known binding TCR sequences are available. However, their performance drops significantly for previously unseen peptides. RESULTS: We prepare the dataset of known peptide:TCR binders and augment it with negative decoys created using healthy donors’ T-cell repertoires. We employ deep learning methods commonly applied in Natural Language Processing to train part a peptide:TCR binding model with a degree of cross-peptide generalization (0.69 AUROC). We demonstrate that BERTrand outperforms the published methods when evaluated on peptide sequences not used during model training. AVAILABILITY AND IMPLEMENTATION: The datasets and the code for model training are available at https://github.com/SFGLab/bertrand. |
---|