Cargando…
BERTrand—peptide:TCR binding prediction using Bidirectional Encoder Representations from Transformers augmented with random TCR pairing
MOTIVATION: The advent of T-cell receptor (TCR) sequencing experiments allowed for a significant increase in the amount of peptide:TCR binding data available and a number of machine-learning models appeared in recent years. High-quality prediction models for a fixed epitope sequence are feasible, pr...
Autores principales: | Myronov, Alexander, Mazzocco, Giovanni, Król, Paulina, Plewczynski, Dariusz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10444968/ https://www.ncbi.nlm.nih.gov/pubmed/37535685 http://dx.doi.org/10.1093/bioinformatics/btad468 |
Ejemplares similares
-
Prediction of Specific TCR-Peptide Binding From Large Dictionaries of TCR-Peptide Pairs
por: Springer, Ido, et al.
Publicado: (2020) -
NetTCR-2.0 enables accurate prediction of TCR-peptide binding by using paired TCRα and β sequence data
por: Montemurro, Alessandro, et al.
Publicado: (2021) -
epiTCR: a highly sensitive predictor for TCR–peptide binding
por: Pham, My-Diem Nguyen, et al.
Publicado: (2023) -
γδTCR immunoglobulin constant region domain exchange in human αβTCRs improves TCR pairing without altering TCR gene-modified T cell function
por: Tao, Changli, et al.
Publicado: (2017) -
Identifying T Cell Receptors from High-Throughput Sequencing: Dealing with Promiscuity in TCRα and TCRβ Pairing
por: Lee, Edward S., et al.
Publicado: (2017)