Cargando…
Contour‐guided deep learning based deformable image registration for dose monitoring during CBCT‐guided radiotherapy of prostate cancer
PURPOSE: To evaluate deep learning (DL)‐based deformable image registration (DIR) for dose accumulation during radiotherapy of prostate cancer patients. METHODS AND MATERIALS: Data including 341 CBCTs (209 daily, 132 weekly) and 23 planning CTs from 23 patients was retrospectively analyzed. Anatomic...
Autores principales: | Hemon, Cédric, Rigaud, Bastien, Barateau, Anais, Tilquin, Florian, Noblet, Vincent, Sarrut, David, Meyer, Philippe, Bert, Julien, De Crevoisier, Renaud, Simon, Antoine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10445205/ https://www.ncbi.nlm.nih.gov/pubmed/37232048 http://dx.doi.org/10.1002/acm2.13991 |
Ejemplares similares
-
Evaluation of Deformable Image Registration Methods for Dose Monitoring in Head and Neck Radiotherapy
por: Rigaud, Bastien, et al.
Publicado: (2015) -
Inter-fraction deformable image registration using unsupervised deep learning for CBCT-guided abdominal radiotherapy
por: Xie, Huiqiao, et al.
Publicado: (2023) -
Accuracy of deformable image registration for contour propagation in adaptive lung radiotherapy
por: Hardcastle, Nicholas, et al.
Publicado: (2013) -
Integration of operator-validated contours in deformable image registration for dose accumulation in radiotherapy
por: Bosma, Lando S, et al.
Publicado: (2023) -
Leveraging deep learning-based segmentation and contours-driven deformable registration for dose accumulation in abdominal structures
por: McCulloch, Molly M., et al.
Publicado: (2022)