Cargando…
Classifying Free Texts Into Predefined Sections Using AI in Regulatory Documents: A Case Study with Drug Labeling Documents
[Image: see text] The US Food and Drug Administration (FDA) regulatory process often involves several reviewers who focus on sets of information related to their respective areas of review. Accordingly, manufacturers that provide submission packages to regulatory agencies are instructed to organize...
Autores principales: | Gray, Magnus, Xu, Joshua, Tong, Weida, Wu, Leihong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10445280/ https://www.ncbi.nlm.nih.gov/pubmed/37487037 http://dx.doi.org/10.1021/acs.chemrestox.3c00028 |
Ejemplares similares
-
BERT-Based Natural Language Processing of Drug Labeling Documents: A Case Study for Classifying Drug-Induced Liver Injury Risk
por: Wu, Yue, et al.
Publicado: (2021) -
Prioritization of Free-Text Clinical Documents: A Novel Use of a Bayesian Classifier
por: Singh, Mark, et al.
Publicado: (2015) -
Classifying domain-specific text documents containing ambiguous
keywords
por: Karimi, Kamran, et al.
Publicado: (2021) -
Correction: Prioritization of Free-Text Clinical Documents: A Novel Use of a Bayesian Classifier
por: Singh, Mark, et al.
Publicado: (2020) -
DLI-IT: a deep learning approach to drug label identification through image and text embedding
por: Liu, Xiangwen, et al.
Publicado: (2020)