Cargando…

Recyclable and Degradable Ionic-Substituted Long-Chain Polyesters

[Image: see text] Ionic groups can endow apolar polymers like polyethylene with desirable traits like adhesion with polar compounds. While ethylene copolymers provide a wide range of tunability via the carboxylate content and neutralization with different cations, they lack degradability or suitabil...

Descripción completa

Detalles Bibliográficos
Autores principales: Saumer, Anne, Mecking, Stefan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10445281/
https://www.ncbi.nlm.nih.gov/pubmed/37621695
http://dx.doi.org/10.1021/acssuschemeng.3c03141
Descripción
Sumario:[Image: see text] Ionic groups can endow apolar polymers like polyethylene with desirable traits like adhesion with polar compounds. While ethylene copolymers provide a wide range of tunability via the carboxylate content and neutralization with different cations, they lack degradability or suitability for chemical recycling due to their all-carbon backbones. Here, we report ion-containing long-chain polyesters with low amounts of ionic groups (M(n) = 50–60 kg/mol, <0.5 mol % of ionic monomers) which can be synthesized from plant oils and exhibit HDPE-like character in their structural and mechanical properties. In the sulfonic acid as well as neutralized sulfonate-containing polyesters, the nature of the cation counterions (Mg(2+), Ca(2+), and Zn(2+)) significantly impacts the mechanical properties and melt rheology. Acid-containing polyesters exhibit a relatively high capability to absorb water and are susceptible to abiotic degradation. Enhanced surface wettability is reflected by facilitation of printing on films of these polymers. Depolymerization by methanolysis to afford the neat long-chain monomers demonstrates the suitability for chemical recycling. The surface properties of the neutralized sulfonate-containing polyesters are enhanced, showing a higher adsorption capability. Our findings allow for tuning the properties of recyclable polyethylene-like polymers and widen the scope of these promising materials.