Cargando…
A Weakly Supervised Deep Learning Framework for Whole Slide Classification to Facilitate Digital Pathology in Animal Study
[Image: see text] The pathology of animal studies is crucial for toxicity evaluations and regulatory assessments, but the manual examination of slides by pathologists remains time-consuming and requires extensive training. One inherent challenge in this process is the interobserver variability, whic...
Autores principales: | Bussola, Nicole, Xu, Joshua, Wu, Leihong, Gorini, Lorenzo, Zhang, Yifan, Furlanello, Cesare, Tong, Weida |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10445282/ https://www.ncbi.nlm.nih.gov/pubmed/37540590 http://dx.doi.org/10.1021/acs.chemrestox.3c00058 |
Ejemplares similares
-
Weakly supervised learning for multi-organ adenocarcinoma classification in whole slide images
por: Tsuneki, Masayuki, et al.
Publicado: (2022) -
Breast Invasive Ductal Carcinoma Classification on Whole Slide Images with Weakly-Supervised and Transfer Learning
por: Kanavati, Fahdi, et al.
Publicado: (2021) -
Weakly supervised detection and classification of basal cell carcinoma using graph-transformer on whole slide images
por: Yacob, Filmon, et al.
Publicado: (2023) -
Weakly supervised learning and interpretability for endometrial whole slide image diagnosis
por: Mohammadi, Mahnaz, et al.
Publicado: (2022) -
Weakly Supervised Learning for Poorly Differentiated Adenocarcinoma Classification in GastricEndoscopic Submucosal Dissection Whole Slide Images
por: Tsuneki, Masayuki, et al.
Publicado: (2022)